Vol. 43
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-08-11
Diffraction Calculation of Arbitrarily Curved Wedge Modeled with NURBS Surfaces
By
Progress In Electromagnetics Research M, Vol. 43, 63-70, 2015
Abstract
In this paper, we present an equivalent current-based numerical routine for calculating the diffraction of arbitrarily curved wedge modeled with non-uniform rational B-spline (NURBS) curves and surfaces. The NURBS curves and surfaces obtained from CAD systems need to be parameterized for numerical calculation; however, available parameterizing approaches in rendering computer graphics, which use straight line segments and flat facets for tessellation, are not suitable for the computation of the wedge diffraction. To make the full use of NURBS modeling technique in high-frequency asymptotic approaches, the proposed numerical routine utilizes a curvature adaptive tessellation scheme to parameterize the edge curve of the wedge with varying curvature as well as the method of parameter alignment to maintain the C0 continuity between the edge curve and the wedge surfaces, which is essential in evaluating the diffraction coefficients. Based on the proposed parameterizing method, the equivalent edge current can be implemented for diffraction computation of arbitrarily curved wedge modeled with NURBS curves and surfaces, complementing with the NURBS based physical optics (PO) as a fully NURBS-based high-frequency approach, which provides high geometrical accuracy and computational efficiency for calculating diffraction of electrically large curved wedges. Numerical examples are presented to validate the proposed method.
Citation
Jun Yan Jun Hu Huapeng Zhao Zai-Ping Nie , "Diffraction Calculation of Arbitrarily Curved Wedge Modeled with NURBS Surfaces," Progress In Electromagnetics Research M, Vol. 43, 63-70, 2015.
doi:10.2528/PIERM15070605
http://www.jpier.org/PIERM/pier.php?paper=15070605
References

1. Perez, J. and M. F. Catedra, "Application of physical optics to the RCS computation of bodies modeled with NURBS surface," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 10, 1404-1411, 1994.
doi:10.1109/8.320747

2. Dominingo, M., F. Rivas, J. Perez, R., P. Torres, and M. F. Catedra, "Computation of the RCS of complex bodies modeled using NURBS surfaces," IEEE Antennas and Propagation Magazine, Vol. 37, No. 6, 36-47, 1995.
doi:10.1109/74.482030

3. Zhao, Y., X.-W. Shi, and L. Xu, "Modeling with NURBS surfaces used for the calculation of RCS," Progress In Electromagnetics Research, Vol. 78, 49-59, 2008.
doi:10.2528/PIER07082903

4. De Adana, F. S., I. G. Diego, O. G. Blanco, P. Lozano, and M. F. Catedra, "Method based on physical optics for the computation of the radar cross section including diffraction and double effects of metallic and absorbing bodies modeled with parametric surfaces," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 12, 3295-3303, 2004.
doi:10.1109/TAP.2004.836444

5. Wang, N. X., J. Dang, H. B. Yuan, and C. H. Liang, "Study on curved wedge diffraction in NURBS-UTD method," Microwave and Optical Technology Letters, Vol. 55, No. 10, 2317-2321, 2013.
doi:10.1002/mop.27868

6. Balazs, A., M. Guthe, and R. Klein, "Efficient trimmed NURBS tessellation," Journal of WSCG, Vol. 12, No. 1–3, 2004.

7. Chen, X., S. Y. He, D. F. Yu, H. C. Yin, W. D. Hu, and G. Q. Zhu, "Geodesic computation on NURBS surfaces for UTD analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 194-197, 2013.
doi:10.1109/LAWP.2013.2245291

8. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3, 252-258, 1984.
doi:10.1109/TAP.1984.1143303

9. Boehm, W., "Generating the Bezier points of B-spline curves and surfaces," Computer Aided Design, Vol. 13, No. 32, 356-366, 1981.

10. Farin, G., Curves and surface for CAGD, Morgan Kaufmann, San Francisco, 2004.

11. Yan, J., J. Hu, and Z. P. Nie, "Calculation of the physical optics scattering by trimmed NURBS surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1640-1643, 2014.
doi:10.1109/LAWP.2014.2348564