Vol. 44
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-11-09
FDTD Based Numerical Framework for Ground Penetrating Radar Simulation
By
Progress In Electromagnetics Research M, Vol. 44, 127-138, 2015
Abstract
In this paper, a one-dimensional numerical framework based on Finite-Difference Time-Domain (FDTD) method is developed to model response behaviour of Ground penetrating radar (GPR). The effects of electrical properties such as dielectric constant, conductivity of the media have been evaluated. A Gaussian shaped pulse is used as source which propagates through the 1D array grid, and the pulse interactions at different media interfaces have been investigated. The objective of this paper is to assess the modelling criteria and success rate of detecting buried object using the framework. A real life application of GPR to detect a buried steel bar in one meter thick concrete block has been carried out, and the results present successful detection of the steel bar along with measured depth of the concrete cover. The developed framework could be implemented to model multi-layer dielectric blocks with detection capability of various buried objects.
Citation
Md Omar Faruq Howlader, and Tariq Pervez Sattar, "FDTD Based Numerical Framework for Ground Penetrating Radar Simulation," Progress In Electromagnetics Research M, Vol. 44, 127-138, 2015.
doi:10.2528/PIERM15090304
References

1. Ji, G., X. Gao, H. Zhang, and T. Gulliver, "Subsurface object detection using UWB ground penetrating radar," IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 2009.

2. Irving, J. and R. Knight, "Numerical modeling of ground-penetrating radar in 2-D using MATLAB," Journal of Computers & Geosicences, Vol. 33, 1247-1258, 2006.
doi:10.1016/j.cageo.2005.11.006

3. Colla, C., D. McCann, and M. Forde, "Radar testing of a masonry composite structure with sand and water backfill," Journal of Bridge Engineering, Vol. 6, No. 4, 262-270, 2001.
doi:10.1061/(ASCE)1084-0702(2001)6:4(262)

4. Diamanti, N., A. Giannopoulos, and M. C. Forde, "Numerical modelling and experimental verification of GPR to investigate ring separation in brick masonry arch bridges," NDT & E International, Vol. 41, No. 5, 354-363, 2008.
doi:10.1016/j.ndteint.2008.01.006

5. Bergmann, T. and K. Holliger, "Numerical modeling of borehole georadar data," Journal of Geophysics, Vol. 67, No. 4, 1249-1257, 2002.
doi:10.1190/1.1500387

6. Benedetto, A., "Water content evaluation in unsaturated soil using GPR signal analysis in the frequency domain," Journal of Applied Geophysics, Vol. 71, No. 1, 26-35, 2010.
doi:10.1016/j.jappgeo.2010.03.001

7. Balanis, C., Antenna Theory: Analysis and Design, John Wiley and Sons, Inc., New York, 2005.

8. Jin, J., The Finite Element Method in Electromagnetics, 2nd Ed., Wiley-IEEE Press, 2002.

9. Seyfi, L. and E. Yaldz, "A simulator based on energy-efficient GPR algorithm modified for the scanning of all types of regions," Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 20, No. 3, 381-389, 2010.

10. Giannopoulos, A., "Modelling ground penetrating radar by GprMax," Journal of Construction and Building Materials, Vol. 19, 755-762, 2005.
doi:10.1016/j.conbuildmat.2005.06.007

11. Perez-Gracia, V., D. Capua, R. Gonzalez-Drig, and L. Pujades, "Laboratory characterization of a GPR antenna for high-resolution testing: Radiation pattern and vertical resolution," NDT & E International, Vol. 42, 336-344, 2009.
doi:10.1016/j.ndteint.2008.12.007

12. Malhotra, V. and N. Carino, Nondestructive Testing of Concrete, CRC Press, Florida, 2004.

13. Baker, G., S. Jordon, and J. T. Pardy, "An Introduction to ground penetrating radar (GPR)," The Geological Society of America (Special Paper), Vol. 432, No. 2, 2007.

14. Binda, L., A. Saisi, C. Tiraboschi, S. Valle, C. Colla, and M. Forde, "Application of sonic and radar tests on the piers and walls of the Cathedral of Noto," Journal of Construction and Building Materials, Vol. 17, No. 8, 613-627, 2003.
doi:10.1016/S0950-0618(03)00056-4

15. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, John Wiley & Sons, New Jersey, 2013.
doi:10.1002/9781118646700