Vol. 61
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-01-02
Analysis of Short Pulse Impacting on Microwave Induced Thermo-Acoustic Tomography
By
Progress In Electromagnetics Research C, Vol. 61, 37-46, 2016
Abstract
Microwave induced thermo-acoustic tomography (MITAT) is a developing technique for biomedical applications, especially for early breast cancer detection. In this paper, impacts of short microwave pulse on thermo-acoustic (TA) signals are analyzed and verified through some experimental comparisons. In these experiments, short microwave pulses with widths of 10 ns and 500 ns are employed as radiation resources. TA signals generated from a cubic sample are analyzed in both time- and frequency-domain. A trapezoid sample is also performed for experimental comparing. Different from previous literature, the effects of rising edge of radiation microwave pulse have been intensively studied. Experimental results demonstrate that shorter rising edge duration conducts broader bandwidth of TA signal, which give rise to better spatial resolution for tomography imaging.
Citation
Shuangli Liu, Zhiqin Zhao, Xiaozhang Zhu, Zhan-Liang Wang, Jian Song, Bingwen Wang, Yu-Bin Gong, Zai-Ping Nie, and Qing Huo Liu, "Analysis of Short Pulse Impacting on Microwave Induced Thermo-Acoustic Tomography," Progress In Electromagnetics Research C, Vol. 61, 37-46, 2016.
doi:10.2528/PIERC15100902
References

1. Lin, J. C., "On microwave-induced hearing sensation," IEEE Trans. Microw. Theory Techn., Vol. 25, 605-613, 1977.
doi:10.1109/TMTT.1977.1129167

2. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 20, 6093, 2007.
doi:10.1088/0031-9155/52/20/002

3. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604

4. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Trans. Med. Imag., Vol. 55, No. 12, 2792-2800, 2008.

5. Wang, L. V., X. Zhao, H. Sun, and G. Ku, "Microwave-induced acoustic imaging of biological tissues," Rev. Sci. Instrum., Vol. 70, No. 9, 3744-3748, 1999.
doi:10.1063/1.1149986

6. Gao, F., Y. Zheng, X. Feng, and C. D. Ohl, "Thermoacoustic resonance effect and circuit modelling of biological tissue," Appl. Phys. Lett., Vol. 102, No. 6, 063702, 2013.
doi:10.1063/1.4791791

7. Qin, T., X.Wang, Y. Qin, P. Ingram, G.-B.Wan, R. S. Witte, and H. Xin, "Experimental validation of a numerical model for thermoacoustic imaging applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1235-1238, 2015.
doi:10.1109/LAWP.2014.2384022

8. Ku, G. and L. V. Wang, "Scanning thermoacoustic tomography in biological tissue," Med. Phys., Vol. 27, 1195-1202, 2000.
doi:10.1118/1.598984

9. Ku, G. and L. V. Wang, "Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast," Med. Phys., Vol. 28, 4-10, 2001.
doi:10.1118/1.1333409

10. Wang, X., D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Witte, and H. Xin, "Impact of microwave pulses on thermoacoustic imaging applications," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1634-1637, 2012.
doi:10.1109/LAWP.2013.2237743

11. Lou, C., L. Nie, and D. Xu, "Effect of excitation pulse width on thermoacoustic signal characteristics and the corresponding algorithm for optimization of imaging resolution," J. Appl. Phys., Vol. 110, 083101, 2011.
doi:10.1063/1.3651636

12. Lou, C., S. Yang, Z. Ji, Q. Chen, and D. Xing, "Ultrashort microwave-induced thermoacoustic imaging: A breakthrough in excitation efficiency and spatial resolution," Phys. Rev. Lett., Vol. 109, 218101, 2012.
doi:10.1103/PhysRevLett.109.218101

13. Diebold, G., T. Sun, and M. Khan, "Photoacoustic monopole radiation in one, two, and three dimensions," Phys. Rev. Lett., Vol. 67, No. 24, 3384, 1991.
doi:10.1103/PhysRevLett.67.3384

14. Omar, M., J. Gateau, and V. Ntziachristos, "Raster-scan optoacoustic mesoscopy in the 25-125 MHz range," Opt. Lett., Vol. 38, No. 14, 2472-2474, 2013.
doi:10.1364/OL.38.002472

15. Razansky, D., S. Kellnberger, and V. Ntziachristos, "Near-field radiofrequency thermoacoustic tomography with impulse excitation," Med. Phys., Vol. 37, 4602-4607, 2010.
doi:10.1118/1.3467756

16. Rosenthal, A., D. Razansky, and V. Ntziachristos, "Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography," IEEE Trans. Med. Imag., Vol. 29, 1275-1285, 2010.
doi:10.1109/TMI.2010.2044584

17. Xu, M. and L. V. Wang, "Time-domain reconstruction for thermoacoustic tomography in a spherical geometry," IEEE Trans. Med. Imag., Vol. 21, 814-822, 2002.

18. Guy, A. W., "Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models," IEEE Trans. Microw. Theory Techn., Vol. 16, No. 2, 205-214, 1971.
doi:10.1109/TMTT.1968.1127484

19. Song, J., Z. Zhao, J. Wang, X. Zhu, J. Wu, Z. Nie, et al. "Evaluation of contrast enhancement by Carbon Nanotubes for microwave induced thermo-acoustic tomography," IEEE Trans. Biomed. Eng., Vol. 62, 939-938, 2014.

20. Zhao, Z., J. Song, X. Zhu, J. Wang, J. Wu, Y. Liu, Z.-P. Nie, and Q. H. Liu, "System development of microwave induced thermo-acoustic tomography and experiments on breast tumor," Progress In Electromagnetics Research, Vol. 134, 323-336, 2013.
doi:10.2528/PIER12101604

21. Song, J., Z. Zhao, J. Wang, X. Zhu, J. Wu, Z.-P. Nie, and Q. H. Liu, "An integrated simulation approach and experimental research on microwave induced thermo-acoustic tomography system," Progress In Electromagnetics Research, Vol. 140, 385-400, 2013.
doi:10.2528/PIER13041704

22. Hristova, Y., P. Kuchment, and L. Nguyen, "Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media," Inverse Problems, Vol. 24, 055006, 2008.
doi:10.1088/0266-5611/24/5/055006

23. Zheng, W., Z. Zhao, Z.-P. Nie, and Q. H. Liu, "Evaluation of TRM in the complex through wall environment," Progress In Electromagnetics Research, Vol. 90, 235-254, 2009.
doi:10.2528/PIER09011003

24. Deán-Ben, X. L., D. Razansky, and V. Ntziachristos, "The effects of acoustic attenuation in optoacoustic signals," Phys. Med. Biol., Vol. 56, No. 18, 6129, 2011.
doi:10.1088/0031-9155/56/18/021

25. Xu, Y. and L. V. Wang, "Effects of acoustic heterogeneity in breast thermoacoustic tomography," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 50, No. 9, 1134-1146, 2003.
doi:10.1109/TUFFC.2003.1235325