Vol. 45
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-01-04
Diagnosis of the ac Current Densities Effect on the Cathodic Protection Performance of the Steel X70 for a Buried Pipeline Due to Electromagnetic Interference Caused by HVPTL
By
Progress In Electromagnetics Research M, Vol. 45, 163-171, 2016
Abstract
This paper diagnosis the effect of the AC current densities induced by the electromagnetic interference between high voltage power line and buried power line on the cathodic protection performance of the X70 steel in simulated soil. First, the induced AC voltage onto the pipeline was calculated for different power line configuration, separation distances between transmission line and pipeline and parallelism lengths. The induced AC current density was calculated function to the induced AC voltage, soil resistivity, and holiday diameter. Then, the electrochemical characters of the X70 steel at various AC current densities are measured using the potentiodynamic method. The electrochemical parameters obtained by the electrochemical tests are used as boundary conditions in the cathodic protection simulation model. The results indicate that, under influence of AC current densities, the X70 steel is more susceptible to corrosion, and the cathodic protection is unable to maintain the protection potential.
Citation
M'hamed Ouadah, Omar Touhami, and Rachid Ibtiouen, "Diagnosis of the ac Current Densities Effect on the Cathodic Protection Performance of the Steel X70 for a Buried Pipeline Due to Electromagnetic Interference Caused by HVPTL," Progress In Electromagnetics Research M, Vol. 45, 163-171, 2016.
doi:10.2528/PIERM15101103
References

1. Christoforidis, G. and D. Labridis, "Inductive Interference on pipelines buried in multilayer soil due to magnetic fields from nearby faulted power lines," IEEE Transaction on Electromagnetic Compatibility, Vol. 47, No. 2, 254-262, May 2005.
doi:10.1109/TEMC.2005.847399

2. Gupta, A. and M. J. Thomas, "Coupling of high voltage AC power lines fields to metallic pipelines," 9th International Conference on Electro Magnetic Interference and Compatibility, INCEMIC, Bangalore, India, February 23-24, 2006.

3. Saied, M. M., "The capacitive coupling between EHV lines and nearby pipelines," IEEE Transactions on Power Delivery, Vol. 19, No. 3, 1225-1231, 2004.
doi:10.1109/TPWRD.2003.823211

4. Braunstein, R., E. Schmautzer, and M. Oelz, "Impacts of inductive and conductive interference due to high-voltage lines on coating holidays of isolated metallic pipelines," 21st International Conference on Electricity Distribution, 13, Frankfurt, Germany, June 2011.

5. Kopsidas, K. and I. Cotton, "Induced voltages on long aerial and buried pipelines due to transmission line transients," IEEE Trans. Power Del., Vol. 23, No. 3, 1535-1543, July 2008.
doi:10.1109/TPWRD.2007.916234

6. Cotton, I., K. Kopsidas, and Y. Z. Elton, "Comparison of transient and power frequency-induced voltages on a pipeline parallel to an over-head transmission line," IEEE Trans. Power Del., Vol. 22, No. 3, 1706-1714, July 2007.
doi:10.1109/TPWRD.2006.886771

7. Dawalibi, F. P. and R. D. Southey, "Analysis of electrical interference from power lines to gas pipelines, part II - Parametric analysis," IEEE Trans. Power Del., Vol. 5, No. 1, 415-421, January 1990.
doi:10.1109/61.107306

8. Hanafy, M. I., "Effect of oil pipelines existing in an HVTL corridor on the electric-field distribution," IEEE Trans. Power Del., Vol. 22, No. 4, 2466-2471, 2007.
doi:10.1109/TPWRD.2007.905368

9. Zhang, R., P. R. Vairavanathan, and S. B. Lalvani, "Perturbation method analysis of AC-induced corrosion," Corrosion Science, Vol. 50, 1664-1671, 2008.
doi:10.1016/j.corsci.2008.02.018

10. Goidanich, S., L. Lazzari, and M. Ormellese, "AC corrosion. Part 1: Effects on overpotentials of anodic and cathodic processes," Corrosion Science, Vol. 52, 491-497, 2010.
doi:10.1016/j.corsci.2009.10.005

11. Goidanich, S., L. Lazzari, and M. Ormellese, "AC corrosion. Part 2: Parameters influencing corrosion rate," Corrosion Science, Vol. 52, 916-922, 2010.
doi:10.1016/j.corsci.2009.11.012

12. Xu, L. Y., X. Su, Z. X. Yin, Y. H. Tang, and Y. F. Cheng, "Development of a real time AC/DC data acquisition technique for studies of AC corrosion of pipelines," Corrosion Science, Vol. 61, 215-223, 2012.
doi:10.1016/j.corsci.2012.04.038

13. Nielsen, L. V. and F. Galsgaard, "Sensor technology for on-line monitoring of AC-induced corrosion along pipelines," Corrosion'2005, Paper No. 05375, NACE, Houston, USA, 2005.

14. Fu, A. Q. and Y. F. Cheng, "Effect of alternating current on corrosion and effectiveness of cathodic protection of pipelines," Can. Metall. Q., 81-90, 2012.
doi:10.1179/1879139511Y.0000000021

15. Song, H. S., Y. G. Kim, S. M. Lee, and Y. T. Kho, "Competition of AC and DC current in AC corrosion under cathodic protection," Corrosion'2002, Paper No. 02117, NACE, Houston, 2002.

16. Nielsen, L. V., "Role of alkalization in AC induced corrosion of pipelines and consequences hereof in relation to CP requirements," Corrosion'2005, Paper No. 05188, NACE, Houston, USA, 2005.

17. Xu, L. Y., X. Su, and Y. F. Cheng, "Effect of alternating current on cathodic protection on pipelines," Corrosion Science, Vol. 66, 263-268, 2013.
doi:10.1016/j.corsci.2012.09.028

18. Ouadah, M., M. Zergoug, A. Ziouche, O. Touhami, R. Ibtiouen, S. Bouyegh, and C. Dehchar, "AC corrosion induced by high voltage power line on cathodically protected pipeline," Proceedings Engineering & Technology (PET), Vol. 7, 2356-5608, 2014.

19. Nielsen, L. V., "Role of alkalization in AC induced corrosion of pipelines and consequences hereof in relation to CP requirements," Corrosion'2005, Paper No. 05188, NACE, Houston, USA, 2005.

20. Xu, L. Y., X. Su, and Y. F. Cheng, "Effect of alternating current on cathodic protection on pipelines," Corrosion Science, Vol. 66, 263-268, 2013.
doi:10.1016/j.corsci.2012.09.028

21. Braunstein, R., E. Schmautzer, and G. Propst, "Comparison and discussion on potential mitigating measures regarding inductive interference of metallic pipelines," Proceedings of ESARS, Bologna, Italy, October 2010.

22. Hossam-Eldin, A., W. Mokhtar, and E. M. Ali, "Effect of electromagnetic fields from power lines on metallic objects and human bodies," International Journal of Electromagnetic and Applications 2012, Vol. 2, No. 6, 151-158, 2012.
doi:10.5923/j.ijea.20120206.03