Vol. 46
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-01-21
MIMO-OTHR Waveform Optimization Based on the Mutual Information Theory
By
Progress In Electromagnetics Research M, Vol. 46, 69-80, 2016
Abstract
In traditional over-the-horizon radar (OTHR), multipath propagation due to the multi-layer ionospheric structure always deteriorates the detection performance. The properties of multiple-input multiple-output (MIMO) radar technique, which transmits wide beams with low gain at the transmitter and achieves receiver beam-forming to obtain narrow beams with high gain, make it an ideal choice for OTHR to detect target through multi-layer ionosphere and suppress strong clutter. This paper investigates the assumption of a two-layer ionospheric model and proposes a two-step Max-Min algorithm based on the mutual information theory to optimize MIMO-OTHR waveform so as to suppress clutter, interference and noise. The first step is to maximize the mutual information between the echo and target response from the same direction of arrival (DOA) in order to reduce the impact of noise. The second step is to minimize the mutual information between the echoes from different DOAs, in order to suppress the clutter and interference by reducing the correlation of the echoes from the different DOAs. Numerical experiments validate that this algorithm can improve range resolution and detection probability significantly. Experiment results also demonstrate that the previously harmful multipath propagation can be utilized to enhance the detection performance in MIMO-OTHR.
Citation
Yang Luo Zhiqin Zhao Chunbo Luo , "MIMO-OTHR Waveform Optimization Based on the Mutual Information Theory," Progress In Electromagnetics Research M, Vol. 46, 69-80, 2016.
doi:10.2528/PIERM15102903
http://www.jpier.org/PIERM/pier.php?paper=15102903
References

1. Skolnik, M. L., Radar Handbook, 3rd Ed., 807-876, McGraw-Hill, New York, 2008.

2. Headrick, J. M. and J. F. Thomason, "Applications of high frequency radar," Radio Science, 1045-1054, 1998.
doi:10.1029/98RS01013

3. Howland, P. E. and D. C. Copper, "Use of the Wigner-Ville distribution to compensate for ionospheric layer movement in high-frequency sky-wave radar system," Radar and Signal Processing, IEE Proceedings F, Vol. 140, No. 1, 29-36, Feb. 1993.
doi:10.1049/ip-f-2.1993.0004

4. Olkin, J. A., W. C. Nowlin, and J. R. Bamum, "Detection of ships using OTH radar with short integration times," Proceedings of the 1997 IEEE National Radar Conference, 1-6, May 1997.
doi:10.1109/NRC.1997.588081

5. Krolik, J., V. Mecca, O. Kazanci, and I. Bilik, "Multipath spread-Doppler clutter mitigation for over-the-horizon radar," Proceedings of the 2008 IEEE Radar Conference, 1-5, 2008.
doi:10.1109/RADAR.2008.4720844

6. Ravan, M., R. S. Adve, and R. J. Riddolls, "MIMO fast fully adaptive processing in Over-the-Horizon radar," Proceedings of the 2011 IEEE Radar Conference, 538-542, May 2011.

7. Frazer, G. J., Y. I. Abramovich, and B. A. Johnson, "Multiple-input multiple-output over-thehorizon radar: Experimental results," IET Radar, Sonar & Navigation, 290-303, Aug. 2009.
doi:10.1049/iet-rsn.2008.0142

8. Frazer, G. J., Y. I. Abramovich, and B. A. Johnson, "HF skywave MIMO radar: The HILOW experimental program," Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, 639-643, Oct. 2008.

9. Riddolls, R. J., M. Ravan, and R. S. Adve, "Canadian HF over-the-Horizon Radar experiments using MIMO techniques to control auroral clutter," Proceedings of the 2010 IEEE Radar Conference, 718-723, May 2010.
doi:10.1109/RADAR.2010.5494530

10. Olkin, J. A., W. C. Nowlin, and J. Barnum, "Detection of ships using OTH radar with short integration times," Proc. IEEE Nat. Radar Conf., 1-6, Syracuse, NY, May 1997.

11. Abramovich, Y. I., G. J. Frazer, and B. A. Johnson, "Iterative adaptive Kronecker MIMO radar beamformer: Description and convergence analysis," IEEE Transactions on Signal Processing, Vol. 58, No. 7, 3681-3691, Mar. 2010.
doi:10.1109/TSP.2010.2046081

12. Abramovich, Y. I., G. J. Frazer, and B. A. Johnson, "Principles of mode-selective MIMO OTHR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 3, 1839-1868, Jul. 2013.
doi:10.1109/TAES.2013.6558024

13. Luo, Y. and Z. Zhao, "Trajectory optimisation method by using independent component analysis for MIMO-OTHR target tracking," Electronics Letters, Vol. 51, No. 13, 1020-1021, 2015.
doi:10.1049/el.2015.0225

14. Pulford, G. W. and R. J. Evans, "A multipath data association tracker for over-the-horizon radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 4, 1165-1183, Oct. 1998.
doi:10.1109/7.722704

15. Yang, Y. and R. S. Blum, "MIMO radar waveform design based on mutual information and minimum mean-square error estimation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 1, 330-343, Jan. 2007.
doi:10.1109/TAES.2007.357137

16. Tang, B., J. Tang, and Y. Peng, "MIMO radar waveform design in colored noise based on information theory," IEEE Transactions on Signal Processing, Vol. 58, No. 9, 4684-4697, Sep. 2010.
doi:10.1109/TSP.2010.2050885

17. Perl, J. M. and D. Kagan, "Real-time HF channel parameter estimation," IEEE Transactions on Communications, Vol. 34, No. 1, 54-58, Jan. 1986.
doi:10.1109/TCOM.1986.1096434

18. Watts, S., "Modeling and simulation of coherent sea clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 4, 3303-3317, Oct. 2012.
doi:10.1109/TAES.2012.6324707

19. Sen, S. and A. Nehorai, "OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking," IEEE Transactions on Signal Processing, Vol. 58, No. 6, 3152-3162, Mar. 2010.
doi:10.1109/TSP.2010.2044834

20. Chen, Y., Y. Nijsure, C. Yuen, Y. H. Chew, Z. Ding, and S. Boussakta, "Adaptive distributed MIMO radar waveform optimization based on mutual information," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 2, 1374-1385, Apr. 2013.
doi:10.1109/TAES.2013.6494422

21. Frazer, G. J., Y. I. Abramovich, and B. A. Johnson, "Mode-selective OTH radar: Experimental results for one-way transmission via the ionosphere," Proceedings of the 2011 IEEE Radar Conference, 397-402, May 2011.