Vol. 45
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-01-02
Inverse Wave Scattering of Rough Surfaces with Emitters and Receivers in the Transition Zone
By
Progress In Electromagnetics Research M, Vol. 45, 131-141, 2016
Abstract
We deal with the problem of determining the profile of a perfectly conducting rough surface from single-frequency and multistatic data. The two fundamental polarizations are investigated, in a two-dimension scattering configuration. Emitting and receiving antennas are positioned on a probing line some wavelengths above the profile. It is shown how the boundary integral equation method can be adapted to the case where the antenna footprint is much wider that the rough part of the profile. The Newton-Kantorovich iterative inversion process is then performed on these synthetic data. Its accuracy and robustness to additive noise are studied in the context of random rough surfaces with correlation length smaller than the wavelength and slope root mean square up to 0.9.
Citation
Slimane Arhab, and Gabriel Soriano, "Inverse Wave Scattering of Rough Surfaces with Emitters and Receivers in the Transition Zone," Progress In Electromagnetics Research M, Vol. 45, 131-141, 2016.
doi:10.2528/PIERM15103003
References

1. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Radar Remote Sensing and Surface Scattering and Emission Theory, Vol. II, Reading, Artech House, 1982.

2. Leach, R., Optical Measurement of Surface Topography, Springer, 2011.
doi:10.1007/978-3-642-12012-1

3. Kress, R. and T. Tran, "Inverse scattering for a locally perturbed half-plane," Inverse Problems, Vol. 16, No. 5, 1541, 2000.
doi:10.1088/0266-5611/16/5/323

4. Tikhonov, A. and V. Arsenin, Solutions of Ill-posed Problems, Scripta Series in Mathematics, 1977.

5. Elfouhaily, T. and C. A. Guérin, "A critical survey of approximate scattering wave theories from random rough surfaces," Waves in Random Media, Vol. 14, R1-R40, 2004.
doi:10.1088/0959-7174/14/4/R01

6. Mendez, O., A. Roger, and D. Maystre, "Numerical solution for an inverse scattering problem of non-periodic rough surfaces," Applied Physics B: Lasers and Optics, Vol. 32, No. 4, 199-206, 1983.
doi:10.1007/BF00688288

7. Wombell, R. and J. A. DeSanto, "The reconstruction of shallow rough-surface profiles from scattered field data," Inverse Problems, Vol. 7, No. 1, L7, 1991.
doi:10.1088/0266-5611/7/1/002

8. Afifi, S. and M. Diaf, "Scattering by random rough surfaces: Study of direct and inverse problem," Optics Communications, Vol. 265, No. 1, 11-17, 2006.
doi:10.1016/j.optcom.2006.02.044

9. Wombell, R. and J. DeSanto, "Reconstruction of rough-surface profiles with the Kirchhoff approximation," Journal of the Optical Society of America A, Vol. 8, No. 12, 1892-1897, 1991.
doi:10.1364/JOSAA.8.001892

10. Sheppard, C., "Imaging of random surfaces and inverse scattering in the Kirchoff approximation," Waves in Random Media, Vol. 8, No. 1, 53-66, 1998.

11. Schatzberg, A. and A. J. Devaney, "Rough surface inverse scattering within the rytov approximation," JOSA A, Vol. 10, No. 5, 942-950, 1993.
doi:10.1364/JOSAA.10.000942

12. Cmielewski, O., H. Tortel, A. Litman, and M. Saillard, "A two-step procedure for characterizing obstacles under a rough surface from bistatic measurements," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 9, 2850-2858, 2007.
doi:10.1109/TGRS.2007.902289

13. Ogilvy, J. A., Theory of Wave Scattering from Random Rough Surfaces, Adam Hilger, 1991.

14. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations, Wiley Series in Remote Sensing, Wiley-Interscience, 2001.
doi:10.1002/0471224308

15. Chew, W., M. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool, 2008.

16. Arhab, S., G. Soriano, K. Belkebir, A. Sentenac, and H. Giovannini, "Full wave optical profilometry," JOSA A, Vol. 28, No. 4, 576-580, 2011.
doi:10.1364/JOSAA.28.000576

17. Arhab, S., H. Giovannini, K. Belkebir, and G. Soriano, "Full polarization optical profilometry," JOSA A, Vol. 29, No. 8, 1508-1515, 2012.
doi:10.1364/JOSAA.29.001508

18. El-Shenawee, M. and E. L. Miller, "Multiple-incidence and multifrequency for profile reconstruction of random rough surfaces using the 3-D electromagnetic fast multipole model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 11, 2499-2510, 2004.
doi:10.1109/TGRS.2004.834762

19. Spiga, P., G. Soriano, and M. Saillard, "Scattering of electromagnetic waves from rough surfaces: A boundary integral method for low-grazing angles," IEEE Trans. Antennas Propag., Vol. 56, 2043-2050, 2008.
doi:10.1109/TAP.2008.924710

20. Meier, A. and S. Chandler-Wilde, "On the stability and convergence of the finite section method for integral equation formulations of rough surface scattering," Mathematical Methods in the Applied Sciences, Vol. 24, No. 4, 209-232, 2001.
doi:10.1002/mma.210

21. Kantorovich, L., "On Newton's method for functional equations," Dokl. Akad. Nauk SSSR, Vol. 59, 1237-1240, 1948.

22. Roger, A., "Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 2, 232-238, 1981.
doi:10.1109/TAP.1981.1142588

23. Roger, A., "Reciprocity theorem applied to the computation of functional derivatives of the scattering matrix," Electromagnetics, Vol. 2, No. 1, 69-83, 1982.
doi:10.1080/02726348208915158

24. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of electromagnetic Waves: Theories and Applications, Wiley Series in Remote Sensing, 2000.
doi:10.1002/0471224286