1. Hansen, J. E., Spherical Near-field Antenna Measurement, The Institution of Engineering and Technology, 1988.
doi:10.1049/PBEW026E
2. D’Agostino, F., F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, "Far-field reconstruction from a minimum number of spherical spiral data using effective antenna modelings," Progress In Electromagnetics Research B, Vol. 37, 43-58, 2012.
doi:10.2528/PIERB11072707 Google Scholar
3. Farouq, M., M. Serhir, and D. Picard, "Matrix method for far-field calculation using irregular near-field samples for cylindrical and spherical scanning surfaces," Progress In Electromagnetics Research B, Vol. 63, 35-48, 2015.
doi:10.2528/PIERB15040905 Google Scholar
4. Romberg, J., "Imaging via compressive sampling," IEEE Antennas Propag. Mag., Vol. 25, No. 2, 14-20, 2008. Google Scholar
5. Trzasko, J., A. Manduca, and E. Borisch, "Highly under sampled magnetic resonance image reconstruction via homotopic ell-0-minimization," IEEE Trans. Med. Imag., Vol. 28, No. 1, 106-121, 2009.
doi:10.1109/TMI.2008.927346 Google Scholar
6. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," IEEE Radar Conf., Waltham, Massachusetts, 2007. Google Scholar
7. Carin, L., D. Liu, and B. Gua, "In situ compressive sensing," IEEE Science Inverse Problems, Vol. 24, 2008. Google Scholar
8. Giordanengo, G., M. Righero, F. Vipiana, G. Vecchi, and M. Sabbadini, "Fast antenna testing with reduced near field sampling," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2501-2513, 2014.
doi:10.1109/TAP.2014.2309338 Google Scholar
9. Verdin, B. and P. Debroux, "Reconstruction of missing sections of radiation patterns using compressive sensing," IEEE International Symposium, 780-781, 2015. Google Scholar
10. Baraniuk, R., "Compressive sensing," IEEE Signal Process. Mag., Vol. 24, 118-121, 2007.
doi:10.1109/MSP.2007.4286571 Google Scholar
11. Candes, E. J., T. Tao, and J. Romberg, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. on Inf. Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083 Google Scholar
12. Candes, E. J. and T. Tao, "Near optimal signal recovery from random projections: Universal encoding strategies?," IEEE Trans. on Inf. Theory, Vol. 52, No. 12, 5406-5425, 2006.
doi:10.1109/TIT.2006.885507 Google Scholar
13. Fornasier, M. and H. Rauhut, "Compressive sensing," Handbook of Mathematical Methods in Imaging, 187-228, 2010. Google Scholar
14. Rauhut, H., "Compressive sensing and structural random matrices," Theoretical Foundations and Numerical Methods for Sparse Recovery, 1-91, 2010. Google Scholar
15. Fang, H., S. S. Vorobyov, H. Jiang, and O. Taheri, "Permutation meets parallel compressed sensing: How to relax restricted isometry property for 2D sparse signals," Proc. Inst. Elect. Eng. 12th Int. Conf. Antennas Propagation ICAP, 751-744, 2003. Google Scholar