1. Doran, C. and A. Lasenby, Geometric Algebra for Physicists, 2nd Ed., Cambridge University Press, 2003.
doi:10.1017/CBO9780511807497
2. Klimek, M., U. Roemer, S. Schoeps, and T. Weiland, "Space-time discretization of Maxwell’s equations in the setting of geometric algebra," IEEE Proceedings of 2013 URSI International Symposium on Electromagnetic Theory (EMTS), 1101-1104, 2013. Google Scholar
3. Tonti, E., "Finite formulation of the electromagnetic field," Progress In Electromagnetics Research, Vol. 32, 1-44, 2001.
doi:10.2528/PIER00080101 Google Scholar
4. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," International Journal of Numerical Modelling, Vol. 9, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 Google Scholar
5. Sobczyk, G., "Simplicial calculus with geometric algebra," Clifford Algebras and Their Applications in Mathematical Physics, 279-292, Springer, 2011. Google Scholar
6. Hestenes, D., "Differential forms in geometric calculus," Clifford Algebras and their Applications in Mathematical Physics, 269-285, Springer, 1993.
doi:10.1007/978-94-011-2006-7_31 Google Scholar
7. Mullen, P., P. Memari, F. de Goes, and M. Desbrun, "HOT: Hodge-optimized triangulations," ACM Trans. Graph, Vol. 30, 103:1-103:12, 2011.
doi:10.1145/2010324.1964998 Google Scholar
8. Bellver-Cebreros, C. and M. Rodriguez-Danta, "An alternative model for wave propagation in anisotropic impedance-matched metamaterials," Progress In Electromagnetics Research, Vol. 141, 149-160, 2013.
doi:10.2528/PIER13060510 Google Scholar
9. Lindell, I. V., "Electromagnetic wave equation in differential-form representation," Progress In Electromagnetics Research, Vol. 54, 321-333, 2005.
doi:10.2528/PIER05021002 Google Scholar
10. Stern, A., Y. Tong, M. Desbrun, and J. E. Marsden, "Geometric computational electrodynamics with variational integrators and discrete differential forms," Geometry, Mechanics, and Dynamics, Vol. 73, 437-475, Springer, 2015. Google Scholar