Vol. 45
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-18
A Nonreciprocal Multi-Channel Bandstop Filter Using the Generalized Fibonacci Multiferroic Superlattices with the Silver-Mean Sequence
By
Progress In Electromagnetics Research M, Vol. 45, 73-81, 2016
Abstract
The generalized Fibonacci multiferroic superlattices (GFMS) are composed of single-phase multiferroic domains with simultaneous polarization and magnetization and are defined by the binary substitutional rule (BBmA, AB, m = 2, 3). We propose to construct a nonreciprocal multi-channel bandstop filter by the GFMS. The couplings between electromagnetic waves and lattice vibration of multiferroic material with ferroelectric and ferromagnetic (or antiferromagnetic) orders can be invoked either through piezoelectric or piezomagnetic effects and can lead to the creation of the polaritonic band structure. The plane wave expansion method with first-order approximation predicts the existence of multiple band gaps, and electromagnetic waves lying within the band gaps are prohibited, and the band gaps with respect to forward electromagnetic waves (FEWs) and backward electromagnetic waves (BEWs) are asymmetric. The forbidden band structures with FEWs and BEWs are calculated by the transfer matrix method and multiple frequency channels with unidirectional transmission of electromagnetic waves can be further confirmed. Nine and twenty transmission dips in transmission spectra for the BEWs in the frequency range of ω = 0.4 − 0.6 (17.06 GHz-25.59 GHz) are found in the GFMS with m = 2 and 3, respectively, in which the BEWs are prohibited while the FEWs can travel. Thus, the GFMS has all the conditions for the nonreciprocal multi-channel bandstop filter. Besides, the GFMS can also be applied to construct compact multi-channel one-way electromagnetic waveguides.
Citation
Zhenhua Tang, Xuhui Liu, Dajun Lei, Jian-Quan Huang, Feng Qiu, Haiming Deng, Chunzhi Jiang, and Min Yao, "A Nonreciprocal Multi-Channel Bandstop Filter Using the Generalized Fibonacci Multiferroic Superlattices with the Silver-Mean Sequence," Progress In Electromagnetics Research M, Vol. 45, 73-81, 2016.
doi:10.2528/PIERM15110903
References

1. Jopson, R. M., J. Stone, L. W. Stulz, and S. J. Licht, "Nonreciprocal transmission in a fiber Fabry-Perot resonator containing a magnetooptic material," IEEE Photonic. Techn. Lett., Vol. 2, No. 10, 702-704, 1990.
doi:10.1109/68.60765

2. Helszajn, J., C. S. Cheng, and B. A. Wilcock, "A nonreciprocal tunable waveguide directional filter using a turnstile open gyromagnetic resonator," IEEE Trans. Microw. Theory Techn., Vol. 41, No. 11, 1950-1958, 1993.
doi:10.1109/22.273421

3. Oh, T. W., J. H. Shin, H. D. Kim, C. H. Lee, M. S. Lee, and B. Y. Kim, "Bidirectional Erbium-doped fibre amplifier with non-reciprocal optical filter," Electron. Lett., Vol. 37, No. 5, 283-284, 2001.
doi:10.1049/el:20010191

4. Lai, Y. C., W. Zhang, J. A. R Williams, and I. Bennion, "Bidirectional nonreciprocal wavelength-interleaving coherent fiber transversal filter," IEEE Photonic. Tech. Lett., Vol. 16, No. 2, 500-502, 2004.
doi:10.1109/LPT.2003.821242

5. Lli, A. T., M. Codreanu, and M. Juntti, "Compensation of non-reciprocal interference in adaptive MIMO-OFDM cellular systems," IEEE Trans. Wire. Commun., Vol. 6, No. 2, 545-555, 2007.
doi:10.1109/TWC.2007.05240

6. Wu, J., X. Yang, S. Beguhn, J. Lou, and N. X. Sun, "Nonreciprocal tunable low-loss bandpass filters with ultra-wideband isolation based on magnetostatic surface wave," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 12, 3959-3968, 2012.
doi:10.1109/TMTT.2012.2222661

7. Schmid, H., "Multiferroic magnetoelectrics," Ferroelectrics, Vol. 162, 317-338, 1994.
doi:10.1080/00150199408245120

8. Lee, J. H., L. Fang, E. Vlahos, X. L. Ke, Y. W. Jung, L. F. Kourkoutis, J. W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K.M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E. J. Halperin, and D. G. Schlom, "A strong ferroelectric ferromagnet created by means of spin-lattice coupling," Nature, Vol. 466, 954-958, 2010.
doi:10.1038/nature09331

9. Tang, Z. H. and W. Y. Zhang, "Nonreciprocal multiferroic superlattices with broken parity symmetry," Int. J. Mod. Phys. B, Vol. 26, 1250021, 2012.
doi:10.1142/S021797921250021X

10. Negro, L. D., M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett., Vol. 84, 5186, 2004.
doi:10.1063/1.1764602

11. Jiang, X., Y. Zhang, S. Feng, K. C. Huang, Y. Yi, and J. D. Joannopoulos, "Photonic band gaps and localization in the Thue-Morse structures," Appl. Phys. Lett., Vol. 86, 201110, 2005.
doi:10.1063/1.1928317

12. Figotin, A. and I. Vitebskiy, "Electromagnetic unidirectionality in magnetic photonic crystals," Phys. Rev. B, Vol. 67, 165210, 2003.
doi:10.1103/PhysRevB.67.165210

13. Haldane, F. D. M. and S. Raghu, "Possible realization of directional optical waveguides in photonic crystals with Broken Time-Reversal symmetry," Phys. Rev. Lett., Vol. 100, 013904, 2008.
doi:10.1103/PhysRevLett.100.013904

14. Takeda, H. and S. John, "Compact optical one-way waveguide isolators for photonic-band-gap microchips," Phys. Rev. A, Vol. 78, 203804, 2008.

15. Yu, Z. F., G. Veronis, Z. Wang, and S. H. Fan, "One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal," Phys. Rev. Lett., Vol. 100, 023902, 2008.
doi:10.1103/PhysRevLett.100.023902

16. Wang, Z., Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, "Reflection-free one-way edge modes in a gyromagnetic photonic crystal," Phys. Rev. Lett., Vol. 100, 013905, 2008.
doi:10.1103/PhysRevLett.100.013905

17. Yablonovitch, E., "One-way road for light," Nature, Vol. 461, 744, 2009.
doi:10.1038/461744a

18. Liu, Z. X. and W. Y. Zhang, "Bifurcation in band-gap structures and extended states of piezoelectric Thue-Morse superlattices," Phys. Rev. B, Vol. 75, 064207, 2007.
doi:10.1103/PhysRevB.75.064207