Vol. 47
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-03-22
An Efficient Analysis on the Fitting Error Caused by the Deformation of Metal Pylon in the RCS Measurement
By
Progress In Electromagnetics Research M, Vol. 47, 45-55, 2016
Abstract
Target-supporting metal pylon predominantly contributes to background scattering in radar cross section measurement. The separation of scattering from the target and background demands stable background scattering. However, target translation creates variations in metal pylon deformation and changes its scattering, which yields errors in background separation. Analyzing the relationship between the structural parameters of metal pylon and the error caused by its deformation is necessary to reduce errors. A simplified mapping of the relationship is deduced according to the mechanical and electromagnetic theories involved. The approach combines geometrical theory of diffraction for pylon scattering and numerical integration in calculating the deflection of metal pylon to determine the variation of metal pylon scattering, and calculates error in the circle fitting caused by the variation. Simulations with commercial software are employed to verify the efficiency of the numerical model. Although it is slightly contaminated by target-pylon interaction, the approach is 800 times faster than the software simulation. An example of optimization and analysis is provided to demonstrate the trends of optimum structural parameters and fitting error within different pylon weight limits. Such an example proves that the approach can overcome the deficiency of traditional analysis which separately assesses the mechanical and RCS performances of metal pylon.
Citation
Da-Wei An Wu-Yi Chen , "An Efficient Analysis on the Fitting Error Caused by the Deformation of Metal Pylon in the RCS Measurement," Progress In Electromagnetics Research M, Vol. 47, 45-55, 2016.
doi:10.2528/PIERM16011106
http://www.jpier.org/PIERM/pier.php?paper=16011106
References

1. Knott, E. F., J. Shaeffer, and M. Tuley, Radar Cross Section, 2nd Ed., SciTech Publishing, New York, 2004.

2. Muth, L. A., C. M. Wang, and T. Conn, "Robust separation of background and target signals in radar cross section measurements," IEEE Trans. Instrum. Meas., Vol. 54, No. 6, 2462-2468, 2005.
doi:10.1109/TIM.2005.858126

3. Xu, X.-J., "A background and target signal separation technique for exact RCS measurement," International Conference on Electromagnetics in Advanced Applications (ICEAA), 891-894, 2012.

4. Zhao, J.-C. and M. Lv, "Using Kasa method to separate target’s RCS characters from background in electromagnetic sensing within anechoic chamber measurement," Green Computing and Communications, IEEE and Internet of Things, IEEE International Conference on and IEEE Cyber, Physical and Social Computing, 1058-1063, Beijing, 2013.
doi:10.1109/GreenCom-iThings-CPSCom.2013.180

5. MI Technologies, MI-830 Family of RCS Pylons, Catalog No.: DS-830-1.3/08/13.

6. Orbit/FR, RCS Products, http://www.orbitfr.com/sites/www.orbitfr.com/files/RCS_pylon_brochure.pdf.

7. Knott, E. F., Radar Cross Section Measurements, SciTech Publishing, New York, 2006.

8. Lai, A. K.-Y. and M. D. Burnside, "A GTD analysis of ogive pedestal,", 716148-8, Ohio State University, USA, 1986.

9. Jiao, H.-J., Y.-D. Zhang, and W.-Y. Chen, "The lightweight design of low RCS pylon based on structural bionics," Journal of Bionic Engineering, Vol. 7, No. 2, 182-190, 2010.
doi:10.1016/S1672-6529(09)60207-9

10. Burns, J., E. Le Baron, and G. Fliss, "Characterization of target-pylon interactions in RCS measurements," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 144-147, 1997.

11. Chen, P.-H., X.-J. Xu, and Y.-S. Jiang, "Comparison of methods to extract target scattering from scattering of target-metal pylon combination," International Radar Conference, 1-6, Lille, 2014.

12. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

13. Dassault Systèmes, CATIA V5 R20 Infrastructure User Guide, 2009.

14. ANSYS, Inc., ANSYS Help 14.5, 2012.

15. EM Software & Systems, S.A. (Pty) Ltd., FEKO User’s Manual Suite 6.0, 2010.

16. An, D.-W. and W.-Y. Chen, "Simulation approach to calculate the separation error of target and background from metal pylon deformation," International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), 719-722, 2015.