Vol. 47
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-04-09
Planar Arrangement of Modified Concentric Rings with Defected Ground for Mobile and Wireless Communication Systems
By
Progress In Electromagnetics Research M, Vol. 47, 161-169, 2016
Abstract
This paper reports the design and performance of a compact planar arrangement of concentric rings designed with defected ground plane. The radiating circular patch and ground plane of antenna are modified in several steps to achieve a broadband circularly polarized antenna. In each stage of modification, antenna is simulated by applying CST Microwave Studio simulator, and finally, a prototype is developed and tested in free space. The developed prototype efficiently operates at frequencies 2.34 GHz and 4.41 GHz, and provides an overall impedance bandwidth close to 2.31 GHz or 67.45% with respect to central frequency 3.425 GHz. This antenna provides nearly flat gain in the desired frequency band with maximum measured gain close to 2.94 dBi at frequency 3.02 GHz. It also provides circularly polarized radiations in the frequency bands extended from 2.67 to 3.05 GHz and 3.44 to 3.57 GHz. The co-polar and cross-polar radiation patterns of the antenna in azimuth and elevation planes are obtained at frequencies 2.316 GHz and 4.41 GHz. The proposed antenna can be used for mobile and lower bands of Wi-Max and UWB communication systems.
Citation
Neelam Choudhary, Ajay Tiwari, Jaswant Singh Saini, Virender Kumar Saxena, and Deepak Bhatnagar, "Planar Arrangement of Modified Concentric Rings with Defected Ground for Mobile and Wireless Communication Systems," Progress In Electromagnetics Research M, Vol. 47, 161-169, 2016.
doi:10.2528/PIERM16012401
References

1. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Norwood, Mass, USA, 2001.

2. James, J. R., Handbook of Microstrip Antenna, Peter Peregrinus Ltd., London, 1989.

3. Hsu, C.-H., C.-H. Lai, and Y.-S. Chang, "A compact planar microstrip-fed feed patch antenna using high permittivity substrate," PIERS Proceedings, 239-241, Suzhou, China, Sep. 12-16, 2011.

4. Wong, K. L., Compact and Broadband Microstrip Antennas, J. Wiley and Sons, New York, 2002.
doi:10.1002/0471221112

5. Sharma, V., S. Shekhawat, V. K. Saxena, J. S. Saini, K. B. Sharma, B. Soni, and D. Bhatnagar, "Right isosceles triangular microstrip antenna with narrow L-shaped slot," Microwave Opt. Technol. Lett., Vol. 51, No. 12, 3006-3010, Dec. 2009.
doi:10.1002/mop.24781

6. Hsu, W. H. and K. L. Wong, "Broadband aperture-coupled shorted patch antenna," Microwave Opt. Technol. Lett., Vol. 28, 306-307, Mar. 5, 2001.

7. Shekhawat, S., P. Sekra, D. Bhatnagar, V. K. Saxena, and J. S. Saini, "Stacked arrangement of rectangular microstrip patches for circularly polarized broadband performance," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 910-913, 2010.
doi:10.1109/LAWP.2010.2076361

8. Anguera, J., L. Boada, C. Puente, C. Borja, and J. Soler, "Stacked H-shaped microstrip patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 4, 983-993, 2004.
doi:10.1109/TAP.2004.825812

9. Anguera, J., G. Font, C. Puente, C. Borja, and J. Soler, "Multifrequency microstrip patch antenna using multiple stacked elements," IEEE Microwave and Wireless Component Letters, Vol. 13, No. 3, 123-124, 2003.
doi:10.1109/LMWC.2003.810126

10. Davidson, S. E., S. A. Long, and W. F. Richards, "Dual-band microstrip antennas with monolithic reactive loading," Electron. Lett., Vol. 21, No. 20, 936-937, 1985.
doi:10.1049/el:19850662

11. Anguera, J., C. Puente, and C. Borja, "Dual frequency broadband microstrip antenna with a reactive loading and stacked elements," Progress In Electromagnetics Research Letters, Vol. 10, 1-10, 2009.
doi:10.2528/PIERL09040704

12. Wong, K. L., J. S. Kuo, and T. W. Chiou, "Compact microstrip antennas with slots loaded in the ground plane," 11th International Conference on Antennas and Propagation, No. 480, 623-626, Apr. 2001.
doi:10.1049/cp:20010364

13. Anguera, J., I. Sanz, J. Mumbrú, and C. Puente, "Multi-band handset antenna with a parallel excitation of PIFA and slot radiators," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 348-356, 2010.
doi:10.1109/TAP.2009.2038183

14. Wu, C. K. and K. L. Wong, "Broadband microstrip antenna with directly coupled and gap-coupled parasitic patches," Microwave Opt. Technol. Lett., Vol. 22, 348-349, Sep. 5, 1999.

15. Huang, C. Y., J. Y. Wu, C. F. Yang, and K. L. Wong, "Gain enhanced compact broad band microstrip antenna," Electron. Lett., Vol. 34, 138-139, 1998.
doi:10.1049/el:19980167

16. Zhou, W. and P. F. Wahid, "Analysis of microstrip antennas on finite ground planes," Microwave Opt. Technol. Lett., 204-207, 1997.
doi:10.1002/(SICI)1098-2760(199707)15:4<204::AID-MOP5>3.0.CO;2-J

17. Guha, D., M. Biswas, and Y. M. M. Antar, "Microstrip patch antenna with defected ground structure for cross polarization suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 455-458, 2005.
doi:10.1109/LAWP.2005.860211

18. Gautam, A. K., S. Yadav, and B. K. Kanaujia, "A CPW-fed compact UWB microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 151-154, 2013.
doi:10.1109/LAWP.2013.2244055