1. Bindu, G. N., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802 Google Scholar
2. Liu, Z., H. Ukida, P. Ramuhalli, and K. Niel, Integrated Imaging and Vision Techniques for Industrial Inspection, Springer, 2015.
doi:10.1007/978-1-4471-6741-9
3. Cancer Facts & Figures, American Cancer Society, Inc., 2015.
4. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer?," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.
doi:10.1109/MP.2003.1180933 Google Scholar
5. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation - Overview and recent advances," IEEE Instrum. Meas. Mag., Vol. 10, No. 2, 26-38, 2007.
doi:10.1109/MIM.2007.364985 Google Scholar
6. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 11, 1805-1808, 2000. Google Scholar
7. Qing, A. and C. K. Lee, "Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm coupled with Newton-Kantorivitch method," Progress In Electromagnetics Research, Vol. 28, 275-294, 2000.
doi:10.2528/PIER99111102 Google Scholar
8. Golnabi, A. H., P. M. Meaney, S. D. Geimer, and K. D. Paulsen, "Comparison of no-prior and soft-prior regularization in biomedical microwave imaging," J. Med. Phys., Vol. 36, 159-170, 2011.
doi:10.4103/0971-6203.83482 Google Scholar
9. Ostadrahimi, M., P. Mojtabai, S. Noghanian, J. LoVetri, and L. Shafai, "A multiprobe-per-collector modulated scatterer technique for microwave tomography," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1445-1448, 2011.
doi:10.1109/LAWP.2011.2179110 Google Scholar
10. Gilmore, C., A. Zakaria, S. Pistorius, and J. LoVetri, "Microwave imaging of human forearms: Pilot study and image enhancement," Int. J. Biomed. Imaging, Vol. 2013, 673027, 2013. Google Scholar
11. Epstein, N. R., P. M. Meaney, and K. D. Paulsen, "3D parallel-detection microwave tomography for clinical breast imaging," Rev. Sci. Instrum., Vol. 85, 124704, 2014.
doi:10.1063/1.4901936 Google Scholar
12. Arunachalam, K., L. Udpa, and S. Udpa, "Microwave imaging of penetrable scatterers using deformable mirror," IEEE Trans. Magn., Vol. 43, No. 4, 1805-1808, 2007.
doi:10.1109/TMAG.2007.892505 Google Scholar
13. Arunachalam, K., L. Udpa, and S. Udpa, "A computational investigation of microwave breast imaging using deformable reflector," IEEE Trans. Biomed. Eng., Vol. 55, No. 2, 554-562, 2008.
doi:10.1109/TBME.2007.903702 Google Scholar
14. Huang, J. and J. A. Enicar, Reflectarray Antennas, Wiley-IEEE Press, 2007.
doi:10.1002/9780470178775
15. Hum, S. V. and J. Perruissea-Carrier, "Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 183-198, 2014.
doi:10.1109/TAP.2013.2287296 Google Scholar
16. Nayeri, P., F. Yang, and A. Z. Elsherbani, "Beam-scanning reflectarray antennas: A technical overview and state of the art," IEEE Antennas Propag. Mag., Vol. 57, No. 4, 32-47, 2015.
doi:10.1109/MAP.2015.2453883 Google Scholar
17. Tang, J., A. Tayebi, S. Udpa, E. J. Rothwell, and A. Temme, "A dual-band tunable reflectarray," Proc. Int. Symp. Antennas Propag., 1033-1034, 2014. Google Scholar
18. Tayebi, A., J. Tang, P. Roy Paladhi, L. Udpa, and S. S. Udpa, "Design and development of an electrically-controlled beam steering mirror for microwave tomography," AIP Conf. Proc., Vol. 1650, 501-508, 2015.
doi:10.1063/1.4914647 Google Scholar
19. Tayebi, A., J. Tang, P. Roy Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, "Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4534-4539, 2015.
doi:10.1109/TAP.2015.2456939 Google Scholar
20. Zubir, F., M. K. Abd Rahim, O. B. Ayop, and H. A. Majid, "Design and analysis of microstrip reflectarray antenna with minkowski shape radiating element," Progress In Electromagnetics Research B, Vol. 24, 317-331, 2010.
doi:10.2528/PIERB10071208 Google Scholar
21. Perry, B. T., E. J. Rothwell, and L. C. Kempel, "A comparison of the measured pulse response of layered materials using time- and frequency-domain systems," IEEE Antennas Propag. Mag., Vol. 49, No. 5, 117-123, 2007.
doi:10.1109/MAP.2007.4395310 Google Scholar
22. Bellomo, L., S. Pioch, M. Saillard, and E. Spano, "Time reversal experiments in the microwave range: Description of the radar and results," Progress In Electromagnetics Research, Vol. 104, 427-448, 2010.
doi:10.2528/PIER10030102 Google Scholar
23. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal MUSIC method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408 Google Scholar
24. Razavian, M., M. H. Hosseini, and R. Safian, "Time-reversal microwave imaging based on random configuration of transmitters or receivers," Progress In Electromagnetics Research B, Vol. 56, 235-250, 2013.
doi:10.2528/PIERB13080801 Google Scholar
25. Kosmas, P. and M. Rappaport, "Time reversal with FDTD method for microwave breast cancer detection," IEEE Trans. Microw. Theory Techn., Vol. 49, No. 7, 2317-2323, 2005.
doi:10.1109/TMTT.2005.850444 Google Scholar
26. Reyes-Rodríguez, S., N. Lei, B. Crowgey, L. Udpa, and S. S. Udpa, "Time reversal and microwave techniques for solving inverse problem in non-destructive evaluation," NDT & E Int., Vol. 62, 106-114, 2014.
doi:10.1016/j.ndteint.2013.11.003 Google Scholar
27. El Sahmarany, L., L. Berry, N. Ravot, F. Auzanneau, and P. Bonnet, "Time reversal for soft faults diagnosis in wire networks," Progress In Electromagnetics Research M, Vol. 31, 45-58, 2013.
doi:10.2528/PIERM13032801 Google Scholar
28. Maaref, N., P. Millot, X. Ferrières, C. Pichot, and O. Picon, "Electromagnetic imaging method based on time reversal processing applied to through-the-wall target localization," Progress In Electromagnetics Research M, Vol. 1, 59-67, 2008.
doi:10.2528/PIERM08013002 Google Scholar
29. Riddle, B., J. Baker-Jarvis, and J. Krupka, "Complex permittivity measurements of common plastics over variable temperatures," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 3, 727-733, 2003.
doi:10.1109/TMTT.2003.808730 Google Scholar
30. Roy Paladhi, P., A. Sinha, A. Tayebi, L. Udpa, and S. Udpa, "Class of backpropagation techniques for limited-angle reconstruction in microwave tomography," AIP Conf. Proc., Vol. 1650, 509-518, 2015.
doi:10.1063/1.4914648 Google Scholar
31. Roy Paladhi, P., A. K. Sinha, A. Tayebi, L. Udpa, and A. Tamburrino, "Data redundancy in diffraction tomography," Int. Rev. Prog. Appl. Comput. Electrom. (ACES), 1-2, 2015. Google Scholar
32. Roy Paladhi, P., A. K. Sinha, A. Tayebi, L. Udpa, and S. S. Udpa, "Improved backpropagation algorithms by exploiting data redundancy in limited-angle diffraction tomography," Progress In Electromagnetics Research B, Vol. 66, 1-13, 2016. Google Scholar