Vol. 48
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-05-24
Precise Radial Velocity Estimation for Inverse Synthetic Aperture Radar
By
Progress In Electromagnetics Research M, Vol. 48, 133-143, 2016
Abstract
This paper describes a convenient technique of precise radial velocity estimation for inverse synthetic aperture radar (ISAR). In order to keep both the range profile and phase history of the echoes coherent, direct sampling with high sampling rate using high performance analog-to-digital converter and matched-filter correlation processing in pulse compression are used for the ISAR system. Due to the coherence property of the echoes, the translational motion compensation parameters for ISAR imaging are just the radial motion parameters of the target. Thus, the coarse velocity estimation is obtained by range alignment and fine velocity estimation is achieved by phase adjustment. The fine velocity estimation is ambiguous and the coarse velocity estimation is used for ambiguity resolution. The advantage of this technique is the high precision with range error values at sub wavelength levels, and it achieves velocity information and translational motion compensation at the same time. Both simulated and experimental validations are presented to verify the effectiveness of the proposed method.
Citation
Jianzhi Lin, Yue Zhang, Weixing Li, and Zeng Ping Chen, "Precise Radial Velocity Estimation for Inverse Synthetic Aperture Radar," Progress In Electromagnetics Research M, Vol. 48, 133-143, 2016.
doi:10.2528/PIERM16012806
References

1. Abatzoglou, T. J. and G. O. Gheen, "Maximum likelihood motion compensation of a wideband linear FM radar waveform," The Thirtieth Asilomar Conference on Signals, Systems and Computers, Vol. 1, 481-485, CA, USA, Nov. 3-6, 1996.
doi:10.1109/ACSSC.1996.600957        Google Scholar

2. Liu, Y., S. Zhang, D. Zhu, and X. Li, "A novel speed compensation method for ISAR imaging with low SNR," Sensors, Vol. 2015, No. 15, 18402-18415, Jul. 2015.        Google Scholar

3. Camp, W. W., J. T. Mayhan, and R. M. O’Donnell, "Wideband radar for ballistic missile defense and Range-Doppler imaging for satellites," Lincoln Laboratory Journal, Vol. 12, No. 2, 267-280, Feb. 2000.        Google Scholar

4. Delaney, W. P. and W. W. Ward, "Radar development at Lincoln Laboratory: An overview of the first fifty years," Lincoln Laboratory Journal, Vol. 12, No. 2, 147-166, Feb. 2000.        Google Scholar

5. Steudel, F., "An improved process for Phase-Derived-Range measurements,", World Intellectual Property Organization Patent, WO 2005 017 553A1, Feb. 24, 2005.        Google Scholar

6. Steudel, F., "Process for Phase-Derived-Range measurements,", U.S. Patent 2005 030 222A1, Feb. 10, 2005.        Google Scholar

7. Cao, Y., X. Qu, and P. Huang, "Accurate-velocity-measurement method for wideband radar based on keystone transform," Systems Engineering and Electronics, Vol. 31, No. 1, 1-4, Jan. 2009.        Google Scholar

8. Liu, H. and J. Lu, "Target motion compensation algorithm based on keystone transform for wideband pulse Doppler radar," Transactions of Beijing Institute of Technology, Vol. 32, No. 6, 625-630, Jun. 2012.        Google Scholar

9. Li, Y., M. Xing, J. Su, Y. Quan, and Z. Bao, "A New algorithm of ISAR imaging for maneuvering targets with low SNR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 1, 543-557, Jan. 2013.
doi:10.1109/TAES.2013.6404119        Google Scholar

10. Liu, Y., H. Meng, G. Li, and X. Wang, "Velocity estimation and range shift compensation for high range resolution profiling in stepped-frequency radar," IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 4, 791-795, Oct. 2010.
doi:10.1109/LGRS.2010.2047492        Google Scholar

11. Berizzi, F., M. Martorella, A. Cacciamano, et al. "A contrast-based algorithm for synthetic range profile motion compensation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3053-3062, Oct. 2008.
doi:10.1109/TGRS.2008.2002576        Google Scholar

12. Liu, Y., D. Zhu, X. Li, and Z. Zhuang, "Micromotion characteristic acquisition based on wideband radar phase," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 6, 3650-3657, Jun. 2014.
doi:10.1109/TGRS.2013.2274478        Google Scholar

13. Zhu, D., Y. Liu, K. Huo, and X. Li, "A novel high-precision phase-derived-range method for direct sampling LFM radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 2, 1131-1141, Feb. 2016.
doi:10.1109/TGRS.2015.2474144        Google Scholar

14. Song, P., H. Meng, T. Huang, and Y. Liu, "A novel target motion compensation method for randomized stepped frequency ISAR," 2013 Asilomar Conference on Signals, Systems and Computers, 917-921, Pacific Grove, CA, Nov. 3-6, 2013.        Google Scholar

15. Mohapatra, B. B., S. Rajagopal, and V. A. Abid Hussain, "Translational motion estimation and compensation in inverse synthetic aperture radar," 2014 IEEE International Conference on Electronics, Computing and Communication Technologies, 1-5, Bangalore, Jan. 6-7, 2014.        Google Scholar

16. Kathree, U., W. Nel, V. J. van Rensburg, and A. K. Mishra, "Investigation of hopped frequency waveforms for range and velocity measurements of radar targets," 2015 IEEE Radar Conference, 475-480, Johannesburg, Oct. 27-30, 2015.        Google Scholar

17. Bucciarelli, M., D. Pastina, B. Errasti-Alcala, and P. Braca, "Translational velocity estimation by means of bistatic ISAR techniques," 2015 IEEE International Geoscience and Remote Sensing Symposium, 1921-1924, Milan, Jul. 26-31, 2015.        Google Scholar

18. Brisken, S. and J. G. Worms, "ISAR motion parameter estimation via multilateration," 2011 Microwaves, Radar and Remote Sensing Symposium, 190-194, Kiev, Ukraine, Aug. 25-27, 2011.        Google Scholar

19. Corretja, V., E. Grivel, Y. Berthoumieu, J. M. Quellec, T. Sfez, and S. Kemkemian, "Target radial velocity estimation robust against additive disturbances for ISAR application," 2011 IEEE CIE International Conference on Radar, 670-673, Chengdu, China, Oct. 24-27, 2011.        Google Scholar

20. Berger, T. and S. E. Hamran, "An efficient scaled maximum likelihood algorithm for translational motion estimation in ISAR imaging," 2010 IEEE Radar Conference, 75-80, Washington, DC, May 10-14, 2010.        Google Scholar

21. Aprile, A., D. Meledandri, T. M. Pellizzeri, and A. Mauri, "A new approach for estimation and compensation of target translational motion in ISAR imaging," 2008 IEEE Radar Conference, 1-6, Rome, May 26-30, 2008.        Google Scholar

22. Lin, Q., B. Yuan, Y. Zhang, and Z. Chen, "Design and implementation of IF signal highspeed acquisition and real-time storage system for wideband radar," 2011 International Conference on Mechatronic Science, Electric Engineering and Computer, 2022-2026, Jilin, China, Aug. 19-22, 2011.        Google Scholar

23. Lin, Q., Z. Chen, Y. Zhang, and J. Lin, "Coherent phase compensation method based on direct IF sampling in wideband radar," Progress In Electromagnetics Research, Vol. 136, 753-764, 2013.
doi:10.2528/PIER12122203        Google Scholar

24. Zhang, L., J. Sheng, J. Duan, et al. "Translational motion compensation for ISAR imaging under low SNR by minimum entropy," EURASIP Journal on Advances in Signal Processing 2013, Vol. 2013, No. 33, 1-19, 2013.        Google Scholar

25. Chen, C. C. and H. C. Andrews, "Target-motion-induced radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, No. 1, 2-14, Jan. 1980.
doi:10.1109/TAES.1980.308873        Google Scholar

26. Wang, J. and D. Kasilingam, "Global range alignment for ISAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 1, 351-357, Jan. 2003.
doi:10.1109/TAES.2003.1188917        Google Scholar

27. Zhu, D., L. Wang, Y. Yu, Q. Tao, and Z. Zhu, "Robust ISAR range alignment via minimizing the entropy of the average range profile," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 2, 204-208, Apr. 2009.
doi:10.1109/LGRS.2008.2010562        Google Scholar

28. Itoh, T. M. and G. W. Donohoe, "Motion compensation for ISAR via centroid tracking," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 7, 1191-1197, Jul. 1996.        Google Scholar

29. Ye, W., T. S. Yeo, and Z. Bao, "Weighted least-squares estimation of phase errors for SAR/ISAR autofocus," IEEE Transactions on Geosciences and Remote Sensing, Vol. 37, No. 9, 2487-2494, Sep. 1999.
doi:10.1109/36.789644        Google Scholar

30. Eichel, P. H. and C. V. Jakowatz, "Phase-gradient algorithm as an optimal estimator of the phase derivative," Optics Letters, Vol. 14, No. 20, 1101-1103, 1989.
doi:10.1364/OL.14.001101        Google Scholar

31. Li, X., G. Liu, and J. Ni, "Autofocusing of ISAR imaging based on entropy minimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 4, 1240-1251, Apr. 1999.
doi:10.1109/7.805442        Google Scholar

32. Martorella, M., F. Berizzi, and B. Haywood, "Contrast maximization based technique for 2-D ISAR autofocusing," IEE Proceedings on Radar, Sonar and Navigation, Vol. 52, No. 4, 253-262, Apr. 2005.
doi:10.1049/ip-rsn:20045123        Google Scholar

33. Xu, R., Z. Cao, and Y. Liu, "A new method of motion compensation for ISAR," 1990 IEEE International Radar Conference, 234-237, Arlington, VA, May 7-10, 1990.        Google Scholar