1. Saxena, A. K. and K. V. Srivastava, "A three-dimensional unconditionally stable five-step LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 62, No. 3, 1321-1329, Mar. 2014.
doi:10.1109/TAP.2013.2293790 Google Scholar
2. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations of mathematical physics," IBMJ, Vol. 11, 215-234, Mar. 1967.
doi:10.1147/rd.112.0215 Google Scholar
3. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microw. Theory. Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075 Google Scholar
4. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference time-domain method without the Courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, Nov. 1999.
doi:10.1109/75.808026 Google Scholar
5. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 2, 85-87, Feb. 2007.
doi:10.1109/LMWC.2006.890166 Google Scholar
6. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544 Google Scholar
7. Do Nascimento, V. E., B. H. V. Borges, and F. L. Teixeira, "Split-field PML implementations for the unconditionally stable LOD-FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 7, 398-400, Jul. 2006.
doi:10.1109/LMWC.2006.877132 Google Scholar
8. Ahmed, I., E. Li, and K. Krohne, "Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 816-819, Dec. 2007.
doi:10.1109/LMWC.2007.910458 Google Scholar
9. Gedney, S. D., "An Anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antenna Propag., Vol. 44, No. 12, 1630-1639, Dec. 1996.
doi:10.1109/8.546249 Google Scholar
10. Sun, W., N. G. Loeb, and Q. Fu, "Finite-difference time domain solution of light scattering and absorption by particles in an absorbing medium," Appl. Opt., Vol. 41, 5728-5743, Sep. 2002.
doi:10.1364/AO.41.005728 Google Scholar
11. Sun, W., H. Pan, and G. Videen, "General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface," Appl. Opt., Vol. 48, 6015-6025, Nov. 2009. Google Scholar
12. Wei, B., S. Zhang, F. Wang, and D. Ge, "A novel UPML FDTD absorbing boundary condition for dispersive media," Waves in Random and Complex Media, Vol. 20, 511-527, Aug. 2010.
doi:10.1080/17455030.2010.496005 Google Scholar
13. Liang, F. and G. Wang, "Study of Mur's and UPML absorbing boundary condition for the LOD-FDTD method," ICMMT, Vol. 2, 947-949, 2008. Google Scholar
14. Ahmed, I., E. H. Khoo, and L. Erping, "Development of the CPML for three-dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 58, No. 3, 832-837, Mar. 2010.
doi:10.1109/TAP.2009.2039334 Google Scholar
15. Omar, R., "Efficient LOD-SC-PML formulations for electromagnetic fields in dispersive media," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 6, 297-299, 2012.
doi:10.1109/LMWC.2012.2197819 Google Scholar
16. Taflove, A. and S. C. Hagness, Computational electrodynamics the finite-difference time-domain method, 3rd Ed., 293, Artech House, 2005.