Vol. 47
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-04-13
Study of UPML Absorbing Boundary Condition for the Five-Step LOD-FDTD Method
By
Progress In Electromagnetics Research M, Vol. 47, 181-189, 2016
Abstract
In this paper, the uniaxial anisotropic perfectly matched layer (UPML) absorbing boundary condition in unconditionally stable five-step locally one-dimensional finite-difference time-domain (LOD5-FDTD) method is deduced. The UPML absorbing boundary condition (ABC) is validated based on comparison with a simulation in larger domain (and thus without reflection) in the first test. Then using a sinusoidal source, target field phase distribution surrounded by the UPML-ABC is analyzed. The results further illustrate the stability and efficiency of the UPML absorbing boundary condition.
Citation
Lixia Yang Xuejian Feng Lunjin Chen , "Study of UPML Absorbing Boundary Condition for the Five-Step LOD-FDTD Method," Progress In Electromagnetics Research M, Vol. 47, 181-189, 2016.
doi:10.2528/PIERM16022304
http://www.jpier.org/PIERM/pier.php?paper=16022304
References

1. Saxena, A. K. and K. V. Srivastava, "A three-dimensional unconditionally stable five-step LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 62, No. 3, 1321-1329, Mar. 2014.
doi:10.1109/TAP.2013.2293790

2. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations of mathematical physics," IBMJ, Vol. 11, 215-234, Mar. 1967.
doi:10.1147/rd.112.0215

3. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microw. Theory. Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075

4. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference time-domain method without the Courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, Nov. 1999.
doi:10.1109/75.808026

5. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 2, 85-87, Feb. 2007.
doi:10.1109/LMWC.2006.890166

6. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544

7. Do Nascimento, V. E., B. H. V. Borges, and F. L. Teixeira, "Split-field PML implementations for the unconditionally stable LOD-FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 7, 398-400, Jul. 2006.
doi:10.1109/LMWC.2006.877132

8. Ahmed, I., E. Li, and K. Krohne, "Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 816-819, Dec. 2007.
doi:10.1109/LMWC.2007.910458

9. Gedney, S. D., "An Anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antenna Propag., Vol. 44, No. 12, 1630-1639, Dec. 1996.
doi:10.1109/8.546249

10. Sun, W., N. G. Loeb, and Q. Fu, "Finite-difference time domain solution of light scattering and absorption by particles in an absorbing medium," Appl. Opt., Vol. 41, 5728-5743, Sep. 2002.
doi:10.1364/AO.41.005728

11. Sun, W., H. Pan, and G. Videen, "General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface," Appl. Opt., Vol. 48, 6015-6025, Nov. 2009.

12. Wei, B., S. Zhang, F. Wang, and D. Ge, "A novel UPML FDTD absorbing boundary condition for dispersive media," Waves in Random and Complex Media, Vol. 20, 511-527, Aug. 2010.
doi:10.1080/17455030.2010.496005

13. Liang, F. and G. Wang, "Study of Mur's and UPML absorbing boundary condition for the LOD-FDTD method," ICMMT, Vol. 2, 947-949, 2008.

14. Ahmed, I., E. H. Khoo, and L. Erping, "Development of the CPML for three-dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 58, No. 3, 832-837, Mar. 2010.
doi:10.1109/TAP.2009.2039334

15. Omar, R., "Efficient LOD-SC-PML formulations for electromagnetic fields in dispersive media," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 6, 297-299, 2012.
doi:10.1109/LMWC.2012.2197819

16. Taflove, A. and S. C. Hagness, Computational electrodynamics the finite-difference time-domain method, 3rd Ed., 293, Artech House, Norwood, MA, 2005.