Vol. 65
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-07-05
Application of Ultra-Thin Assembled Planar Metamaterial for Wireless Power Transfer System
By
Progress In Electromagnetics Research C, Vol. 65, 153-162, 2016
Abstract
Magnetically coupled resonant wireless power transfer (WPT) has been employed in many applications, including wireless charging of portable electronic devices, electric vehicles, etc. However, the power transfer efficiency (PTE) decreases sharply due to divergence of magnetic field. Electromagnetic (EM) metamaterial (MM) can control the direction of magnetic fields due to its nega-tive effective permeability. In this paper, MMs with negative effective permeability at radio frequencies (RF) are applied to a WPT system operating at around 16.30 MHz for improvement of PTE. This ul-tra-thin and assembled planar MM structure consists of a single-sided periodic array of the capaci-tively loaded split ring resonators (CLSRRs). Both simulation and experiment are performed to cha-racterize the WPT system with and without MMs. The results indicate that the contribution of high PTE is due to the property of negative effective permeability. By integrating MM in the WPT system, the experimental results verify that the measured PTE with one and two MM slabs have respectively 10% and 17% improvement compared to the case without MM. The measured PTEs of the system at different transmission distances are also investigated. Finally, the proposed MM slabs are applied in a more practical WPT system (with a light bulb load) to reveal its effects. The results verify the efficiency improvement by the realized power received the load.
Citation
Jun-Feng Chen, Zhaoyang Hu, Shengming Wang, Minghai Liu, Yongzhi Cheng, Zhixia Ding, Bin Wei, and Songcen Wang, "Application of Ultra-Thin Assembled Planar Metamaterial for Wireless Power Transfer System," Progress In Electromagnetics Research C, Vol. 65, 153-162, 2016.
doi:10.2528/PIERC16033002
References

1. Tesla, N., Electrical World and Engineer, 21-24, January 7, 1905.

2. Garnica, J., R. A. Chinga, and J. Lin, "Wireless power transmission: From far field to near field," Proc. IEEE, Vol. 101, No. 6, 1321-1331, 2013.
doi:10.1109/JPROC.2013.2251411

3. McSpadden, J. O. and J. C. Mankins, "Space solar power programs and microwave wireless power transmission technology," IEEE Micro. Mag., Vol. 3, No. 4, 46-57, 2002.
doi:10.1109/MMW.2002.1145675

4. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, 2007.
doi:10.1126/science.1143254

5. Sample, A. P., D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 58, No. 2, 544-554, 2011.
doi:10.1109/TIE.2010.2046002

6. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

7. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nat. Mater., Vol. 7, No. 6, 435-441, 2008.
doi:10.1038/nmat2141

8. Merlin, R., "Radiationless electromagnetic interference: Evanescent-field lenses and perfect focusing," Science, Vol. 317, 5840, 927–929, 2007.

9. Urzhumov, Y. and D. R. Smith, "Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer," Phys. Rev. B, Vol. 83, No. 20, 205114, 2011.
doi:10.1103/PhysRevB.83.205114

10. Huang, D., Y. Urzhumov, D. R. Smith, K. H. Teo, and J. Zhang, "Magnetic superlens-enhanced inductive coupling for wireless power transfer," J. Appl. Phys., Vol. 111, No. 6, 064902, 2012.
doi:10.1063/1.3692757

11. Lipworth, G., J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, "Magnetic metamaterial superlens for increased range wireless power transfer," Sci. Rep., Vol. 4, 3642, 2014.

12. Zhao, Y. and E. Leelarasmee, "Controlling the resonances of indefinite materials for maximizing efficiency in wireless power transfer," Microw. Opt. Techn. Lett., Vol. 56, No. 4, 867-875, 2014.
doi:10.1002/mop.28212

13. Huang, Y., H. J. Tang, E. C. Chen, and C. Yao, "Effect on wireless power transmission with different layout of left-handed materials," AIP Adv., Vol. 3, No. 7, 072134, 2013.
doi:10.1063/1.4817579

14. Che, B. J., G. H. Yang, F. Y. Meng, K. Zhang, J. H. Fu, Q. Wu, and L. Sun, "Omnidirectional non-radiative wireless power transfer with rotating magnetic field and efficiency improvement by metamaterial," Appl. Phys. A, Vol. 116, No. 4, 1579-1586, 2014.
doi:10.1007/s00339-014-8409-0

15. Choi, J. and C. H. Seo, "High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

16. Wang, B., K. H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, and J. Zhang, "Experiments on wireless power transfer with metamaterials," Appl. Phys. Lett., Vol. 98, No. 25, 254101, 2011.
doi:10.1063/1.3601927

17. Fan, Y., L. Li, S. Yu, C. Zhu, and C. H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711

18. Wang, B., W. Yerazunis, and K. H. Teo, "Wireless power transfer: Metamaterials and array of coupled resonators," Proc. IEEE, Vol. 101, No. 6, 1359-1368, 2013.
doi:10.1109/JPROC.2013.2245611

19. Rajagopalan, A., A. K. Ram Rakhyani, D. Schurig, and G. Lazzi, "Improving power transfer efficiency of a short-range telemetry system using compact metamaterials," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 4, 947-955, 2014.
doi:10.1109/TMTT.2014.2304927

20. Ranaweera, A. L. A. K., T. P. Doung, and J. W. Lee, "Experimental investigation of compact metamaterial for high efficiency midrange wireless power transfer applications," J. Appl. Phys., Vol. 116, No. 4, 043914, 2014.
doi:10.1063/1.4891715

21. Zhang, Y., H. Tang, C. Yao, Y. Li, and S. Xiao, "Experiments on adjustable magnetic metamaterials applied in megahertz wireless power transmission," AIP Adv., Vol. 5, No. 1, 017142, 2015.
doi:10.1063/1.4907043

22. Wu, Q., Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, "Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength metaatoms," EPL-Europhys. Lett., Vol. 109, No. 6, 68005, 2015.
doi:10.1209/0295-5075/109/68005

23. Rao, X. S. and C. K. Ong, "Amplification of evanescent waves in a lossy left-handed material slab," Phys. Rev. B, Vol. 68, No. 11, 113103, 2003.
doi:10.1103/PhysRevB.68.113103

24. Baena, J. D., L. Jelinek, R. Marques, and F. Medina, "Near-perfect tunneling and amplification of evanescent electromagnetic waves in a waveguide filled by a metamaterial: Theory and experiments," Phys. Rev. B, Vol. 72, No. 7, 075116, 2005.
doi:10.1103/PhysRevB.72.075116

25. Cui, T. J., X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, "Experiments on evanescent-wave amplification and transmission using metamaterial structures," Phys. Rev. B, Vol. 73, No. 24, 245119, 2006.
doi:10.1103/PhysRevB.73.245119

26. Cho, Y., H. Kim, C. Song, J. Song, D. H. Kim, H. Kim, and J. Kim, "Ultra-thin printed circuit board metamaterial for high efficiency wireless power transfer," IEEE Wireless Power Transfer Conference (WPTC), 2015.

27. Chabalko, M., B. Jordan, and R. David, "Magnetic field enhancement in wireless power using metamaterials magnetic resonant couplers," IEEE Antennas Wireless Propag. Lett., Vol. 15, 2016.

28. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, No. 1, 014402, 2004.
doi:10.1103/PhysRevB.69.014402

29. Erentok, A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B. I. Popa, T. Hand, D. C. Vier, and S. Schultz, "Lumped element-based, highly sub-wavelength, negative index metamaterials at UHF frequencies," J. Appl. Phys., Vol. 104, No. 3, 034901, 2008.
doi:10.1063/1.2959377

30. Chen, W. C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Padilla, "Extremely subwavelength planar magnetic metamaterials," Phys. Rev. B, Vol. 85, No. 20, 201104, 2012.
doi:10.1103/PhysRevB.85.201104

31. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

32. Duong, T. P. and J. W. Lee, "Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 8, 442-444, 2011.
doi:10.1109/LMWC.2011.2160163