1. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, 1998.
2. Harrington, R. F., Field Computation by Moment Methods, MacMillan, 1968.
3. Zienkiewicz, O. C., The Finite Element Method in Engineering Science, McGraw-Hill, 1971.
4. Adams, R. J., "Physical and analytical properties of a stabilized electric field integral equation," IEEE Trans. Antennas Propag., Vol. 52, 362-372, Feb. 2004.
doi:10.1109/TAP.2004.823957 Google Scholar
5. Andriulli, F., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Trans. Antennas Propag., Vol. 56, 2398-2412, Aug. 2008.
doi:10.1109/TAP.2008.926788 Google Scholar
6. Stephanson, M. B. and J.-F. Lee, "Preconditioned electric field integral equation using Calderon identities and dual loop/star basis functions," IEEE Trans. Antennas Propag., Vol. 57, 1274-1279, Apr. 2009.
doi:10.1109/TAP.2009.2016173 Google Scholar
7. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic problems," IEEE Trans. Antennas Propag., Vol. 40, 634-641, Jun. 1992.
doi:10.1109/8.144597 Google Scholar
8. Hackbusch, W., "A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices," Computing, Vol. 62, No. 2, 89-108, 1999.
doi:10.1007/s006070050015 Google Scholar
9. Kron, G., "A set of principles to interconnect the solutions of physical systems," Journal of Applied Physics, Vol. 24, No. 8, 965-980, 1953.
doi:10.1063/1.1721447 Google Scholar
10. Li, M.-K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antennas Propag., Vol. 55, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453 Google Scholar
11. Shao, H., J. Hu, W. Lu, H. Guo, and Z. Nie, "Analyzing large-scale arrays using tangential equivalence principle algorithm with characteristic basis functions," Proceedings of the IEEE, Vol. 101, 414-422, Feb. 2013.
doi:10.1109/JPROC.2012.2193652 Google Scholar
12. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propag., Vol. 56, 3440-3451, Nov. 2008. Google Scholar
13. Xiao, G., J.-F. Mao, and B. Yuan, "A generalized surface integral equation formulation for analysis of complex electromagnetic systems," IEEE Trans. Antennas Propag., Vol. 57, 701-710, Mar. 2009.
doi:10.1109/TAP.2009.2013425 Google Scholar
14. Ylä-Oijala, P. and M. Taskinen, "Electromagnetic scattering by large and complex structures with surface equivalence principle algorithm," Waves in Random and Complex Media, Vol. 19, 105-125, Feb. 2009.
doi:10.1080/17455030802585365 Google Scholar
15. Olćan, D. I., I. M. Stevanović, J. R. Mosig, and A. R. Djordjević, "Diakoptic approach to analysis of multiconductor transmission lines," Microwave and Optical Technology Letters, Vol. 50, No. 4, 931-936, 2008.
doi:10.1002/mop.23246 Google Scholar
16. Stevanović, I. M. and J. R. Mosig, "Efficient evaluation of macro-basis-function reaction terms in the subdomain multilevel approach," Microwave and Optical Technology Letters, Vol. 42, No. 2, 138-143, 2004.
doi:10.1002/mop.20232 Google Scholar
17. Craeye, C., J. Laviada, R. Maaskant, and R. Mittra, "Macro basis function framework for solvingMaxwell’s equations in surface-integral-equation form," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 3, 1-16, May 2014, Online at www.efermat.org. Google Scholar
18. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 56, 999-1007, Apr. 2008.
doi:10.1109/TAP.2008.919166 Google Scholar
19. Zhang, B., G. Xiao, J. Mao, and Y.Wang, "Analyzing large-scale non-periodic arrays with synthetic basis functions," IEEE Trans. Antennas Propag., Vol. 58, 3576-3584, Nov. 2010. Google Scholar
20. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green’s operators," IEEE Trans. Antennas Propag., Vol. 57, 3575-3585, Nov. 2009. Google Scholar
21. Van de Water, A. M., "LEGO: Linear Embedding via Green’s Operators,", Ph.D. thesis, Technische Universiteit Eindhoven, 2007. Google Scholar
22. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Scattering from large 3-D piecewise homogeneous bodies through linear embedding via Green’s operators and Arnoldi basis functions," Progress In Electromagnetics Research, Vol. 103, 305-322, Apr. 2010.
doi:10.2528/PIER10032915 Google Scholar
23. Lancellotti, V. and A. G. Tijhuis, "Extended linear embedding via Green’s operators for analyzing wave scattering from anisotropic bodies," International Journal of Antennas and Propagation, 11 pages, Article ID 467931, 2014. Google Scholar
24. Lancellotti, V. and D. Melazzi, "Hybrid LEGO-EFIE method applied to antenna problems comprised of anisotropic media," Forum in Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 6, 1-19, 2014, Online at www.e-fermat.org. Google Scholar
25. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "On the convergence of the eigencurrent expansion method applied to linear embedding via Green’s operators (LEGO)," IEEE Trans. Antennas Propag., Vol. 58, 3231-3238, Oct. 2010. Google Scholar
26. Bebendorf, M., "Approximation of boundary element matrices," Numer. Matematik, Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410 Google Scholar
27. Lancellotti, V. and R. Maaskant, "A comparison of two types of macro basis functions defined on LEGO electromagnetic bricks," 9th European Conference on Antennas and Propagation (EuCAP 2015), Lisbon, Portugal, Apr. 2015. Google Scholar
28. Lancellotti, V., "Fast generation of macro basis functions for LEGO through the adaptive cross approximation," International Conference on Electromagnetics in Advanced Applications (ICEAA 2015), Turin, Italy, Sept. 2015, invited paper. Google Scholar
29. Zhao, K., M. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. Electromag. Compat., Vol. 47, 763-773, Nov. 2005.
doi:10.1109/TEMC.2005.857898 Google Scholar
30. Maaskant, R., R. Mittra, and A. G. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propag., Vol. 56, 3440-3451, Nov. 2008. Google Scholar
31. Maaskant, R. and V. Lancellotti, "Field computations through the ACA algorithm," 9th European Conference on Antennas and Propagation (EuCAP 2015), Lisbon, Portugal, Apr. 2015. Google Scholar
32. Collin, R. E., Field Theory of Guided Waves, IEEE Press, 1991.
33. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran, 2nd Ed., Cambridge University Press, 1994.
34. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Analysis of antennas in the presence of large composite 3-D structures with linear embedding via Green’s operators (LEGO) and a modified EFIE," 4th European Conference on Antennas and Propagation (EuCAP’10), 1-5, Barcelona, Spain, Apr. 2010, invited paper. Google Scholar