1. Moupfouma, F. and L. Martin, "Modelling of the rainfall rate cumulative distribution for the design of satellite and terrestrial communication systems," Int. J. Satellite Commun., Vol. 13, 105-115, 1995.
doi:10.1002/sat.4600130203 Google Scholar
2. Manabe, T., T. Ihara, J. Awaka, and Y. Furuhama, "The relationship of raindrop-size distribution to attenuation experiments at 50, 80, 140, and 240 GHz," IEEE Trans. Antennas Propag., Vol. 35, 1326-1330, 1987.
doi:10.1109/TAP.1987.1144005 Google Scholar
3. Yeo, T. S., P. S. Kooi, M. S. Leong, and S. S. Ng, "Microwave attenuation due to rainfall at 21.225 GHz in the Singapore environment," Electron. Lett., Vol. 26, No. 14, 1021-1022, 1990.
doi:10.1049/el:19900661 Google Scholar
4. Yeo, T. S., P. S. Kooi, and M. S. Leong, "A two-year measurement of rainfall attenuation of CW microwaves in Singapore," IEEE Trans. Antennas Propag., Vol. 41, No. 6, 709-712, 1993.
doi:10.1109/8.250446 Google Scholar
5. Zhou, Z. X., L. W. Li, T. S. Yeo, and M. S. Leong, "Analysis of experimental results on microwave propagation in Singapore’s tropical rainfall environment," Microwave Opt. Technol. Lett., Vol. 21, No. 6, 470-473, 1999.
doi:10.1002/(SICI)1098-2760(19990620)21:6<470::AID-MOP19>3.0.CO;2-5 Google Scholar
6. Obiyemi, O. O., J. S. Ojo, and T. S. Ibiyemi, "Performance analysis of rain rate models for microwave propagation designs over tropical climate," Progress In Electromagnetics Research M, Vol. 39, 115-122, 2014.
doi:10.2528/PIERM14083003 Google Scholar
7. Mori, S., J. I. Hamada, I. M. Yudi, M. D. Yamanaka, N. Okamoto, F. Murata, N. Sakurai, H. Hashiguchi, and T. Sribimawati, "Diurnal land-sea rainfall peak migration over Sumatera island, Indonesian maritime continent, observed by TRMM satellite and intensive rawinsonde soundings," Mon. Weather Rev., Vol. 132, No. 8, 2021-2039, 2004.
doi:10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2 Google Scholar
8. Marzuki, T. Kozu, T. Shimomai, W. L. Randeu, H. Hashiguchi, and Y. Shibagaki, "Diurnal variation of rain attenuation obtained from measurement of raindrop size distribution in equatorial Indonesia," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1191-1196, 2009.
doi:10.1109/TAP.2009.2015812 Google Scholar
9. Fiebig, U.-C. and C. Riva, "Impact of seasonal and diurnal variations on satellite system design in V band," IEEE Trans. Antennas Propag., Vol. 52, No. 4, 923-932, 2004.
doi:10.1109/TAP.2004.825650 Google Scholar
10. Madden, R. A. and P. R. Julian, "Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific," J. Atmos. Sci., Vol. 28, 702-708, 1971.
doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2 Google Scholar
11. Marzuki, H. Hashiguchi, T. Kozu, T. Shimomai, Y. Shibagaki, and Y. Takahashi, "Precipitation microstructure in different Madden-Julian oscillation phases over Sumatra," Atmos. Res., Vol. 168, 121-138, 2016.
doi:10.1016/j.atmosres.2015.08.022 Google Scholar
12. Wheeler, M. C. and H. H. Hendon, "An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction," Mon. Weather Rev., Vol. 132, No. 8, 1917-1932, 2004.
doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2 Google Scholar
13. Kozu, T., K. K. Reddy, S. Mori, M. Thurai, J. T. Ong, D. N. Rao, and T. Shimomai, "Seasonal and diurnal variations of raindrop size distribution in Asian Monsoon region," J. Meteor. Soc. Japan. Ser. II, Vol. 84A, 195-209, 2006.
doi:10.2151/jmsj.84A.195 Google Scholar
14. Radiowave Propagation Series, I.T.U. "Characteristics of precipitation for propagation modelling,", Recommendation ITU-R P.837-5, International Telecommunications Union, Geneva, 2007. Google Scholar
15. Omotosho, T. V., J. S. Mandeep, M. Abdullah, and A. T. Adediji, "Distribution of one-minute rain rate in Malaysia derived from TRMM satellite data," Ann. Geophys., Vol. 31, 2013-2022, doi:10.5194/angeo-31-2013-2013, 2013. Google Scholar
16. Hendon, H. H., "Indonesian rainfall variability: Impacts of ENSO and local air-sea interaction," J. Clim., Vol. 16, No. 11, 1775-1790, 2003.
doi:10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2 Google Scholar
17. Radiowave Propagation Series, I.T.U. "The concept of worst month,", Recommendation ITU-R P.581-2, International Telecommunications Union, Geneva, 1990. Google Scholar
18. Chebil, J. and T. A. Rahman, "Worst-month rain statistics for radio wave propagation study in Malaysia," Electron. Lett., Vol. 35, 1447-1449, 1999.
doi:10.1049/el:19990936 Google Scholar
19. Radiowave Propagation Series, I.T.U. "Conversion of annual statistics to worst-month statistics,", Recommendation ITU-R P.841-4, International Telecommunications Union, Geneva, 2005. Google Scholar
20. Ting, T. T. and J. S. Mandeep, "Analysis of worst-month relationship with annual rain attenuation in Malaysia," Research Journal of Applied Sciences, Engineering and Technology, Vol. 7, No. 7, 1453-1455, 2014. Google Scholar
21. Aldrian, E. and R. D. Susanto, "Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature," Int. J. of Climatology, Vol. 23, No. 12, 1435-1452, 2003.
doi:10.1002/joc.950 Google Scholar
22. Marzuki, H. Hashiguchi, M. K. Yamamoto, S. Mori, and M. D. Yamanaka, "Regional variability of raindrop size distribution over Indonesia," Ann. Geophys., Vol. 31, 1941-1948, doi:10.5194/angeo-31-1941-2013, 2013. Google Scholar