1. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Med. Phys., Vol. 37, 4210-4226, 2010.
doi:10.1118/1.3443569 Google Scholar
2. Hassan, M. and A. M. El-Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Rev. Biomed. Eng., Vol. 4, 103-118, 2011.
doi:10.1109/RBME.2011.2169780 Google Scholar
3. Winters, D. W., J. D. Shea, P. Kosmas, B. D. van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Trans. Med. Imaging, Vol. 28, No. 7, 969-981, 2009.
doi:10.1109/TMI.2008.2008959 Google Scholar
4. Winters, D. W., E. J. Bond, B. D. van Veen, and S. C. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3517-3528, 2006.
doi:10.1109/TAP.2006.884296 Google Scholar
5. Deng, Y. and X. Liu, "Electromagnetic imaging methods for nondestructive evaluation applications," Sensors, Vol. 11, No. 12, Basel, Switzerland, 2011. Google Scholar
6. Pastorino, M., S. Caorsi, and A. Massa, "A global optimization technique for microwave nondestructive evaluation," IEEE Transactions on Instrumentation and Measurement, Vol. 51, No. 4, 666-673, 2002.
doi:10.1109/TIM.2002.803084 Google Scholar
7. Rufus, E. and Z. C. Alex, "Microwave imaging system for the detection of buried objects using UWB antenna - An experimental study," PIERS Proceedings, 786-788, Kuala Lumpur, Malaysia, Mar. 27-30, 2012. Google Scholar
8. Crocco, L., F. Soldovieri, N. J. Cassidy, and G. Prisco, "Early-stage leaking pipes GPR monitoring via microwave tomographic inversion," J. Appl. Geophys., Vol. 67, No. 4, 270-277, 2009.
doi:10.1016/j.jappgeo.2008.09.006 Google Scholar
9. Xu, H., T. Li, and Y. Sun, "The application research of microwave imaging in nondestructive testing of concrete wall," 2006 6th World Congress on Intelligent Control and Automation, Vol. 1, 5157-5161, 2006.
doi:10.1109/WCICA.2006.1713374 Google Scholar
10. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 357-381, 2003.
doi:10.1163/156939303322235860 Google Scholar
11. Guo, B., J. Li, H. Zmuda, and M. Sheplak, "Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 54, No. 11, 2000-2010, 2007.
doi:10.1109/TBME.2007.895108 Google Scholar
12. Curtis, C. and E. Fear, "Beamforming in the frequency domain with applications to microwave breast imaging," 2014 8th European Conference on Antennas and Propagation (EuCAP), 72-76, 2014.
doi:10.1109/EuCAP.2014.6901695 Google Scholar
13. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 203-215, 1997.
doi:10.1109/8.560338 Google Scholar
14. Caorsi, S., G. L. Gragnani, and M. Pastorino, "Two-dimensional microwave imaging by a numerical inverse scattering solution," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 981-989, 1990.
doi:10.1109/22.57321 Google Scholar
15. Rekanos, T. T. and T. D. Tsiboukis, "A combined finite element - Nonlinear conjugate gradient spatial method for the reconstruction of unknown scatterer profiles," IEEE Trans. Magn., Vol. 34, No. 5, 2829-2832, 1998.
doi:10.1109/20.717658 Google Scholar
16. Papadopoulos, T. G. and I. T. Rekanos, "Time-domain microwave imaging of inhomogeneous Debye dispersive scatterers," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 1197-1202, 2012.
doi:10.1109/TAP.2011.2173150 Google Scholar
17. Papadopoulos, T. G., T. I. Kosmanis, and I. T. Rekanos, "Microwave imaging of dispersive scatterers using vectorial lagrange multipliers," PIERS Proceedings, 1926-1931, Prague, Jul. 6-9, 2015. Google Scholar
18. Takenaka, T., H. J. H. Jia, and T. Tanaka, "An FDTD approach to the time-domain inverse scattering problem for na lossy cylindrical object," 2000 Asia-Pacific Microw. Conf. Proc. (Cat. No. 00TH8522), Vol. 8, No. 2, 3-6, 2000. Google Scholar
19. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 12, 1609-1626, 2000.
doi:10.1163/156939300X00383 Google Scholar
20. Ping, K. A. H., T. Moriyama, T. Takenaka, and T. Tanaka, "Two-dimensional Forward-Backward Time-Stepping approach for tumor detection in dispersive breast tissues," 2009 Mediterrannean Microwave Symposium (MMS), 1-4, 2009.
doi:10.1109/MMS.2009.5409833 Google Scholar
21. Johnson, J. E., T. Takenaka, K. Ping, S. Honda, and T. Tanaka, "Advances in the 3-D Forward-Backward Time-Stepping (FBTS) inverse scattering technique for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 56, No. 9, 2232-2243, 2009.
doi:10.1109/TBME.2009.2022635 Google Scholar
22. Ng, S. W., K. A. H. Ping, L. S. Yee, W. Z. A. Wan Azlan, T. Moriyama, and T. Takenaka, "Reconstruction of extremely dense breast composition utilizing inverse scattering technique integrated with frequency-hopping approach," ARPN J. Eng. Appl. Sci., Vol. 10, No. 18, 8479-8484, 2015. Google Scholar
23. Yong, G., K. A. H. Ping, A. S. C. Chie, S. W. Ng, and T. Masri, "Preliminary study of forward-backward time-stepping technique with edge-preserving regularization for object detection applications," 2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), 77-81, 2015.
doi:10.1109/ICBAPS.2015.7292222 Google Scholar
24. Dai, Y. H. and Y. Yuan, "A nonlinear conjugate gradient method with a strong global convergence property," SIAM Journal on Optimization, Vol. 10, No. 1, 177-182, 1999.
doi:10.1137/S1052623497318992 Google Scholar