Vol. 49
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-08
A Set of Simple Numerical Pattern Synthesis Algorithms for Anti-Jamming with Superdirective Receiving Array
By
Progress In Electromagnetics Research M, Vol. 49, 195-202, 2016
Abstract
Although a superdirective array can acquire maximum directive gain with electrically small array, in some practical applications, low sidelobe and deep nulls are also important, which can effectively inhibit directional interferences. In this work, a set of simple superdirective pattern synthesis methods are proposed. By introducing diagonal loading factor and adding virtual jamming constraints, they can keep suitable tradeoff among directive gain, efficiency and anti-jamming performance. Besides, easy realization is another good feature of the proposed methods.
Citation
Huajun Zhang Huotao Gao Huaqiao Zhao Ting Cao Boya Li , "A Set of Simple Numerical Pattern Synthesis Algorithms for Anti-Jamming with Superdirective Receiving Array," Progress In Electromagnetics Research M, Vol. 49, 195-202, 2016.
doi:10.2528/PIERM16052001
http://www.jpier.org/PIERM/pier.php?paper=16052001
References

1. Sanzgiri, S. M. and J. K. Butler, "Constrained optimization of the performance indices of arbitrary array antennas," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 4, 493-497, 1971.
doi:10.1109/TAP.1971.1139955

2. Schelkunoff, S. A., "A mathematical theory of linear arrays," Bell System Technical Journal, Vol. 22, No. 1, 80-107, 1943.
doi:10.1002/j.1538-7305.1943.tb01306.x

3. Barrick, D. E. and P. M. Lilleboe, "Circular superdirective receive antenna arrays,", Patent No.: US 6,844,849 B1, Jan. 18, 2005.

4. Ma, Y. L., et al., "Theoretical and practical solutions for high-order superdirectivity of circular sensor arrays," IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 203-209, 2013.
doi:10.1109/TIE.2012.2185020

5. Yaru, N., "A note on super-gain antenna arrays," Proceedings of the IRE, Vol. 39, No. 9, 1080-1085, 1951.
doi:10.1109/JRPROC.1951.273753

6. Newman, E. H., J. H. Richmond, and C. H. Walter, "Superdirective receiving arrays," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 5, 629-639, 1978.
doi:10.1109/TAP.1978.1141928

7. Dawoud, M. and A. Anderson, "Design of superdirective arrays with high radiation efficiency," IEEE Trans. on Antennas and Propagation, Vol. 26, No. 6, 819-823, 1978.
doi:10.1109/TAP.1978.1141953

8. Zhou, Q. C., et al., "Robust superdirective beamforming for HF circular receive antenna arrays," Progress In Electromagnetics Research, Vol. 136, 665-679, 2013.
doi:10.2528/PIER12122301

9. Zhang, H. J., et al., "A novel digital beamformer applied in vehicle mounted HF receiving device," IEICE Electronics Express, Vol. 11, No. 2, 1-8, 2014.
doi:10.1587/elex.11.20130919

10. Zhang, H. J., et al., "Robust superdirective beamforming under uncertainty set constraint," Progress In Electromagnetics Research C, Vol. 59, 59-69, 2015.
doi:10.2528/PIERC15053106

11. Zhou, Q. C., et al., "Superdirective beamforming with interferences and noise suppression via second-order cone programming," Progress In Electromagnetics Research C, Vol. 43, 255-269, 2013.

12. Yang, Y. X., et al., "Experimental study on robust supergain beamforming for conformal vector arrays," Oceans. IEEE, 1-5, 2013.

13. Olen, C. A. and R. T. Compton, "A numerical pattern synthesis algorithm for arrays," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 10, 1666-1676, 1990.
doi:10.1109/8.59781

14. Tseng, C. Y. and L. J. Griffiths, "A simple algorithm to achieve desired patterns for arbitrary arrays," IEEE Transactions on Signal Processing, Vol. 40, No. 14, 2737-2746, 1992.
doi:10.1109/78.165660

15. Shi, Z. and Z. Feng, "A new array pattern synthesis algorithm using the two-step least-squares method," IEEE Signal Processing Letters, Vol. 12, No. 3, 250-253, 2005.
doi:10.1109/LSP.2004.842282

16. Askari, M. and M. Karimi, "Quadratically constrained beamforming applied to UCA," Iranian Conference on Electrical Engineering, 1178-1183, 2012.
doi:10.1109/IranianCEE.2012.6292533