1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, May 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486-2489, Jun. 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
3. Sauvan, C., Lalanne, and J.-Hugonin, "Photonics: tuning holes in photonic-crystal nanocavities," Nature, Vol. 429, No. 6988, 1-154, 2004.
doi:10.1038/nature02602 Google Scholar
4. Pan, J., Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, "Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system," Appl. Phys. Lett., Vol. 97, No. 10, 101102, 2010.
doi:10.1063/1.3486686 Google Scholar
5. Sun, C., C. H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. S. Peh, and V. Stojanovic, "DSENT - A tool connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling," Proceedings of the 2012 6th IEEE/ACM International Symposium on Networks-on-Chip, NoCS 2012, 201-210, 2012.
doi:10.1109/NOCS.2012.31 Google Scholar
6. Inoue, T., M. De Zoysa, T. Asano, and S. Noda, "On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters," Appl. Phys. Lett., Vol. 108, No. 9, 091101, 2016.
doi:10.1063/1.4942595 Google Scholar
7. Bragheri, F., R. Osellame, and R. Ramponi, "Optofluidics for biophotonic applications," IEEE Photonics J., Vol. 4, No. 2, 596-600, 2012.
doi:10.1109/JPHOT.2012.2190725 Google Scholar
8. Sayrin, C., C. Clausen, B. Albrecht, Schneeweiss, and A. Rauschenbeutel, "Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms," Optica, Vol. 2, No. 4, 353, 2015.
doi:10.1364/OPTICA.2.000353 Google Scholar
9. Loncar, M., "Molecular sensors: Cavities lead the way," Nat. Photonics, Vol. 1, No. 10, 565-567, Feb. 2007.
doi:10.1038/nphoton.2007.187 Google Scholar
10. Osorio, D. and A. D. Ham, "Spectral reflectance and directional properties of structural coloration in bird plumage," J. Exp. Biol., Vol. 205, No. 14, 2017-2027, 2002. Google Scholar
11. Vigneron, J. and Simonis, "Natural photonic crystals," Phys. B Condens. Matter, Vol. 407, No. 20, 4032-4036, Oct. 2012.
doi:10.1016/j.physb.2011.12.130 Google Scholar
12. Forster, J. D., H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. C. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, "Biomimetic isotropic nanostructures for structural coloration," Adv. Mater., Vol. 22, No. 26-27, 2939, Jul. 2010.
doi:10.1002/adma.200903693 Google Scholar
13. Fu, T., Z. Yang, Z. Shi, F. Lan, D. Li, and X. Gao, "Dispersion properties of a 2D magnetized plasma metallic photonic crystal," Phys. Plasmas, Vol. 20, No. 2, 023109, 2013.
doi:10.1063/1.4792264 Google Scholar
14. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, No. 2, 89-90, 2004.
doi:10.1585/jspf.80.89 Google Scholar
15. Qi, L., Z. Yang, X. Gao, F. Lan, and Z. Shi, "Transmission characteristics of electromagnetic waves in plasma photonic crystal by a novel FDTD method," PIERS Proceedings, 1044-1048, Beijing, China, Mar. 23-27, 2009. Google Scholar
16. Ataei, E., M. Sharifian, and N. Z. Bidoki, "Magnetized plasma photonic crystals band gap," J. Plasma Phys., Vol. 80, No. 04, 581-592, Aug. 2014.
doi:10.1017/S0022377814000105 Google Scholar
17. Ashutosh and K. Jain, "FDTD analysis of the dispersion characteristics of the metal pbg structures," Progress In Electromagnetics Research B, Vol. 39, 71-88, Feb. 2012.
doi:10.2528/PIERB11120601 Google Scholar
18. Umenyi, A. V., K. Miura, and O. Hanaizumi, "Modified finite-difference time-domain method for triangular lattice photonic crystals," J. Light. Technol., Vol. 27, No. 22, 4995-5001, Nov. 2009.
doi:10.1109/JLT.2009.2027449 Google Scholar
19. Schneider, J., "Understanding the finite-difference time-domain method," Sch. Electr. Eng. Comput., 2014. Google Scholar
20. Kunz, K. and R. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, Scitech Publishing Inc., 1993.
21. Lewyt, H., "Courant-Friedrichs-Lewy,", Mar. 1967. Google Scholar
22. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony’s methods," IEEE Microw. Guid. Wave Lett., Vol. 2, No. 11, 431-433, Nov. 1992.
doi:10.1109/75.165633 Google Scholar
23. Qiu, M. and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys., Vol. 87, No. 12, 8268, 2000.
doi:10.1063/1.373537 Google Scholar