Vol. 50
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-20
A Comparison Among Different Kinds of Stator Lamination in Tubular Linear Machines
By
Progress In Electromagnetics Research M, Vol. 50, 95-104, 2016
Abstract
In this paper the authors perform a comparison among three different stator structures for a Tubular Permanent Magnet Linear Machine. Each structure is characterized by its own lamination which is expected to contribute to the overall performance of the machine. A detailed analysis of the main figures of merit of the three configurations has been carried out in order to identify the configuration with the best characteristics. Significant data such as flux distribution, rated voltage and current, force on the moved and power losses have been compared. The results show that the choice of a mixed stator lamination allows to improve the performance of these machines.
Citation
Giovanni Cipriani Mattia Corpora Vincenzo Di Dio Antonino Musolino Rocco Rizzo Luca Sani , "A Comparison Among Different Kinds of Stator Lamination in Tubular Linear Machines," Progress In Electromagnetics Research M, Vol. 50, 95-104, 2016.
doi:10.2528/PIERM16071201
http://www.jpier.org/PIERM/pier.php?paper=16071201
References

1. Di Dio, V. and M. Montana, "State of art of tubular linear induction motor," 8th Mediterranean Electrotechnical Conference, 1996, MELECON ’96, Vol. 1, No. 10, 285-288, 1996.

2. Gieras, J. F., Linear Induction Drives, Oxford Univ. Press, New York, USA, 1994.

3. Musolino, A., R. Rizzo, and E. Tripodi, "The double-sided tubular linear induction motor and its possible use in the electromagnetic aircraft launch system," IEEE Trans. on Plasma Sci., Vol. 41, No. 5, 1193-1200, May 2013.
doi:10.1109/TPS.2013.2244915

4. Musolino, A., R. Rizzo, and E. Tripodi, "Tubular linear induction machine as a fast actuator: Analysis and design criteria," Progress In Electromagnetics Research, Vol. 132, 603-619, 2012.
doi:10.2528/PIER12091506

5. Wang, G., W. Jewell, and D. Howe, "A general framework for the analysis and design of tubular linear permanent magnet machines," IEEE Trans. Magn., Vol. 35, No. 3, 1986-2000, 2010.
doi:10.1109/20.764898

6. Cipriani, G., M. Corpora, V. Di Dio, R Miceli, C. Spataro, and M. Trapanese, "Technical and economical comparison between NdFeB and hard ferrites linear electrical generators from sea waves," International Conference on Renewable Energy Research and Applications (ICRERA), 2015.

7. Di Dio, V., G. Cipriani, R. Miceli, and R. Rizzo, "Design criteria of tubular linear induction motors and generators: A prototype realization and its characterization," Leonardo Electron. J. Practices Technol., Vol. 12, No. 23, 23-41, 2013.

8. De O. Falcäo, A. F., "Wave energy utilization: A review of the technologies," Renewable and Sustainable Energy Reviews, Vol. 14, No. 3, 899-918, 2010.
doi:10.1016/j.rser.2009.11.003

9. Cappelli, L., F. Marignetti, G. Mattiazzo, E. Giorcelli, G. Bracco, S. Carbone, and C. Attaianese, "Linear tubular permanent-magnet generators for the inertial sea wave energy converter," IEEE Transactions on Industry Applications, Vol. 50, No. 3, 1817-1828, May 2014.
doi:10.1109/TIA.2013.2291939

10. Mohamed, K. H., N. C. Sahoo, and T. B. Ibrahim, "A survey of technologies used in wave energy conversion systems," 2011 International Conference on Energy, Automation, and Signal (ICEAS), 1-6, Bhubaneswar, Odisha, 2011.

11. Hong, Y., R. Waters, C. Bostrm, M. Eriksson, J. Engstrm, and M. Leijon, "Review on electrical control strategies for wave energy converting systems," Renewable and Sustainable Energy Reviews, Vol. 31, 329-342, March 2014, ISSN 1364-0321.
doi:10.1016/j.rser.2013.11.053

12. Kurupath, V., R. Ekstrm, and M. Leijon, "Optimal constant DC link voltage operation of a wave energy converter," Energies, Vol. 6.4, 1993-2006, 2013.
doi:10.3390/en6041993

13. Bostrom, C., B. Ekergard, R. Waters, M. Eriksson, and M. Leijon, "Linear generator connected to a resonance-rectifier circuit," IEEE Journal of Oceanic Engineering, Vol. 38, No. 2, 255,262, April 2, 2013.

14. Cardelli, E., "A general hysteresis operator for the modeling of vector fields," IEEE Transactions on Magnetics, Vol. 47, No. 8, 2056-2067, 2011.
doi:10.1109/TMAG.2011.2126589

15. Cardelli, A. F. E. and E. Della Torre, "A general vector hysteresis operator: Extension to the 3-d case," IEEE Transactions on Magnetics, Vol. 46, 3990-4000, December 2010.
doi:10.1109/TMAG.2010.2072933