1. Guo, N., R. C. Qiu, S. S. Mo, and K. Takahashi, "60-GHz millimeter-wave radio: Principle, technology, and new results," EURASIP Journal on Wireless Communications and Networking, Vol. 2007, 2007. Google Scholar
2. Yildirim, F., A. S. Sadri, and H. Liu, "Polarization effects for indoor wireless communications at 60 GHz," IEEE Communications Letters, Vol. 12, No. 9, 660-662, Sep. 2008.
doi:10.1109/LCOMM.2008.080757 Google Scholar
3. Rappaport, T. S., J. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proceedings of the IEEE, Vol. 99, No. 8, 1390-1436, Aug. 2011.
doi:10.1109/JPROC.2011.2143650 Google Scholar
4. Petosa, A. and A. Ittipiboon, "Dielectric resonator antennas: A historical review and the current state of the art," IEEE Antennas Propag. Mag., Vol. 52, No. 5, 91-116, Oct. 2010.
doi:10.1109/MAP.2010.5687510 Google Scholar
5. Elkarkraoui, T., G. Y. Delisle, N. Hakem, and Y. Coulibaly, "High gain cross DRA antenna array for underground communications," IEEE International Symposium on Antennas and Propagation, Memphis, TN, USA, Jul. 6–12, 2014. Google Scholar
6. Vettikalladi, H., O. Lafond, and M. Himdi, "High-gain broad-band superstrate millimeter wave antenna for 60GHz indoor communications," 5th ESA Workshop on Millimeter Wave Technology and Applications and 31st ESA Antenna Workshop at ESTEC, Netherland, May 18–20, 2009. Google Scholar
7. Nasimuddin and K. P. Esselle, "A low-profile compact microwave antenna with high gain and wide bandwidth," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1880-1883, Jun. 2007.
doi:10.1109/TAP.2007.898644 Google Scholar
8. Petosa, A., A. Ittipiboon, Y. M. M. Antar, and D. Roscoe, "Recent advances in dielectric resonator antenna technology," IEEE Antennas and Propagation Magazine, Vol. 40, No. 3, 35-48, Jun. 1998.
doi:10.1109/74.706069 Google Scholar
9. Lee, M., S.-J. Kim, G. Kwon, C. M. Song, Y. Yang, K.-Y. Lee, and K. C. Hwang, "Circularly polarized semi-eccentric annular dielectric resonator antenna for X-band applications," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1810-1813, 2015.
doi:10.1109/LAWP.2015.2435052 Google Scholar
10. Chair, R., et al. "Aperture-fed wideband circularly polarized rectangular stair-shaped dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1350-1352, Apr. 2006.
doi:10.1109/TAP.2006.872665 Google Scholar
11. Sulaiman, M. I. and S. K. Khamas, "A singly fed rectangular dielectric resonator antenna with a wideband circular polarization," IEEE Antennas Wireless Propag. Lett., Vol. 9, 615-618, Jun. 2010.
doi:10.1109/LAWP.2010.2054060 Google Scholar
12. Kaklamani, D., "Full-wave analysis of a Fabry-Perot type resonator," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 12, 1627-1634, 1999.
doi:10.1163/156939399X00024 Google Scholar
13. Huang, C.-Y., J.-Y. Wu, and K.-L. Wong, "Cross-slot-coupled microstrip antenna and dielectric resonator antenna for circular polarization," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 4, 605-609, 1999.
doi:10.1109/8.768798 Google Scholar
14. Kumari, R. and R. Kumar, "Circular polarized dielectric resonator antenna: Design and developments," Wireless Personal Communications, Vol. 86, No. 2, 851-886, Jan. 2016.
doi:10.1007/s11277-015-2959-0 Google Scholar
15. Himdi, J., P. Daniel, and C. Terret, "Transmission line analysis of aperture coupled microstrip antenna," Electronics Letters, Vol. 25, No. 18, 1229-1230, Aug. 1989.
doi:10.1049/el:19890824 Google Scholar
16. Baba, A. A., M. A. Zakariya, Z. Baharudin, M. Z. U. Rehman, M. F. Ain, and Z. A. Ahmad, "Equivalent lumped-element circuit of aperture and mutually coupled cylindrical dielectric resonator antenna array," Progress In Electromagnetics Research C, Vol. 45, 15-31, 2013.
doi:10.2528/PIERC13091101 Google Scholar
17. Al-Jibouri, Y. B., H. Evans, E. Korolkiewicz, E. G. Lim, A. Sambell, and T. Viasits, "Cavity model of circularly polarised cross-aperture-coupled microstrip antenna," IEE Proceedings: Microwaves, Antennas and Propagation, Vol. 148, No. 3, 147-152, 2001.
doi:10.1049/ip-map:20010498 Google Scholar
18. Haneishi, M. and S. Yoshida, "A design method of circularly polarized rectangular microstrip antenna by one-feed point," Electronics & communications in Japan, Vol. 64, No. 4, 46-54, 1981.
doi:10.1002/ecja.4410640407 Google Scholar
19. Garg, R., B. Prakash, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.
20. Ruan, Y.-F., Y.-X. Guo, and X.-Q. Shi, "Equivalent circuit model of a tri-resonance wideband dielectric resonator antenna," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1427-1433, 2007.
doi:10.1002/mop.22470 Google Scholar
21. Kishk, A. A., et al. "Numerical analysis of stacked dielectric resonator antennas excited by a coaxial probe for wideband applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1996. Google Scholar
22. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828 Google Scholar
23. Garcia-Vigueras, M., J. L. Gomez-Tornero, G. Goussetis, and A. R. WeilyY. J. Guo, "1D-leaky wave antenna employing parallel-plate waveguide loaded with PRS and HIS," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3687-3694, 2011.
doi:10.1109/TAP.2011.2163756 Google Scholar
24. Zhao, T., D. R. Jackson, J. T. Williams, and A. A. Oliner, "General formulas for 2-D leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3525-3533, Nov. 2005.
doi:10.1109/TAP.2005.856315 Google Scholar
25. Garcıa-Vigueras, M., J. L. Gomez-Tornero, G. Goussetis, D. Canete-Rebenaque, and A. Alvarez- Melcon, "Software tool for the leaky-mode analysis of waveguides loaded with frequency selective surfaces," European Conference on Antennas and Propagation (EuCAP), Berlin, Germany, Mar. 23–27, 2009. Google Scholar
26. Kosmas, P., A. P. Feresidis, and G. Goussetis, "Periodic FDTD analysis of a 2-D leaky-wave planar antenna based on dipole frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 55, No. 7, 2006-2012, 2007.
doi:10.1109/TAP.2007.900233 Google Scholar
27. Caloz, C. and T. Itoh, "Array factor approach of leaky/wave antennas and application to 1-D/2-D Composite Right/Left-Handed (CRLH) structures," EEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 274-276, Jun. 2004.
doi:10.1109/LMWC.2004.828009 Google Scholar
28. Vettikalladi, H., O. Lafond, and M. Himdi, "High-efficient and high-gain superstrate antenna for 60-GHz indoor communication," IEEE Antennas Wireless Propagat. Lett., Vol. 8, 1422-1425, 2009.
doi:10.1109/LAWP.2010.2040570 Google Scholar
29. Perron, A., T. A. Denidni, and A. R. Sebak, "Circularly polarized microstrip/elliptical dielectric ring resonator antenna for millimeter-wave applications," IEEE Antennas Wireless Propag. Lett., Vol. 9, 783-786, Aug. 2010.
doi:10.1109/LAWP.2010.2064750 Google Scholar
30. Bisharat, D. J., S. Liao, and Q. Xue, "Circularly-polarized planar aperture antenna for millimeterwave application," IEEE Trans. Antennas Propagation, Vol. 63, No. 12, 5316-5324, 2015.
doi:10.1109/TAP.2015.2496116 Google Scholar
31. Guntupalli, B. and K.Wu, "60-GHz circularly polarized antenna array made in low-cost fabrication process," IEEE Antennas Wireless Propag. Lett., Vol. 13, 86-867, May 2014. Google Scholar