Vol. 51
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-11
Spectral Domain Analysis of Gyrotropic Anisotropy Chiral Effect on the Input Impedance of a Printed Dipole Antenna
By
Progress In Electromagnetics Research M, Vol. 51, 1-8, 2016
Abstract
A theoretical analysis of a printed dipole antenna on a gyrotropic-anisotropy chiral dielectric substrate is presented. The study is based on numerical techniques for the characterization of electromagnetic propagation in chiral media. The general complex wave equation and the dispersion relation for such a medium are derived in the spectral domain. The spectral Green's function of a grounded dielectric chiral slab is developed, and the spectral domain moment method impedance matrix elements are calculated. The effect of the chiral gyrotropy element on the input impedance of a dipole antenna printed on a grounded chiral substrate is analyzed using the Galerkin-based Method of Moments.
Citation
Djamel Sayad, Fatiha Benabdelaziz, Chemseddine Zebiri, Samiha Daoudi, and Raed A. Abd-Alhameed, "Spectral Domain Analysis of Gyrotropic Anisotropy Chiral Effect on the Input Impedance of a Printed Dipole Antenna," Progress In Electromagnetics Research M, Vol. 51, 1-8, 2016.
doi:10.2528/PIERM16073106
References

1. Kim, M. J., C. S. Cho, and J. Kim, "A dual band printed dipole antenna with spiral structure for WLAN application," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 12, 910-912, Dec. 2005.
doi:10.1109/LMWC.2005.859947        Google Scholar

2. Wu, J. and K. Sarabandi, "Anisotropic magneto-dielectrics for wideband planar antenna miniaturization applications," 2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 111-111, Memphis, TN, 2014.
doi:10.1109/USNC-URSI.2014.6955493        Google Scholar

3. Zarifi, D., M. Soleimani, and A. Abdolali, "Electromagnetic characterization of biaxial bianisotropic media using the state space approach," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1538-1542, Mar. 2014.
doi:10.1109/TAP.2013.2297166        Google Scholar

4. Havrilla, M. J., "Scalar potential formulation for a bianisotropic gyrotropic inhomogeneous medium and associated boundary conditions," 2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 162-162, Memphis, TN, 2014.
doi:10.1109/USNC-URSI.2014.6955544        Google Scholar

5. Jamilan, S., M. A. Antoniades, J. Nourinia, and M. N. Azarmanesh, "A compact multiband printed dipole antenna loaded with two unequal parallel NRI-TL metamaterial unit cells," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4244-4250, Sep. 2015.
doi:10.1109/TAP.2015.2452952        Google Scholar

6. Islam, M. M., M. T. Islam, M. Samsuzzaman, and M. R. I. Faruque, "Compact metamaterial antenna for UWB applications," Electronics Letters, Vol. 51, No. 16, 1222-1224, 2015.
doi:10.1049/el.2015.2131        Google Scholar

7. Bilotti, F. and L. Vegni, "Chiral cover effects on microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2891-2898, Oct. 2003.
doi:10.1109/TAP.2003.816317        Google Scholar

8. Zebiri, C., M. Lashab, and F. Benabdelaziz, "Rectangular microstrip antenna with uniaxial bi-anisotropic chiral substrate-superstrate," IET Microwaves, Antennas & Propagation, Vol. 5, No. 1, 17-29, 2011.
doi:10.1049/iet-map.2009.0446        Google Scholar

9. Ouchetto, B. A. El Majd, H. Ouchetto, B. Essakhi, and S. Zouhdi, "Homogenization of periodic structured materials with chiral properties," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1751-1758, May 2016.
doi:10.1109/TAP.2016.2536177        Google Scholar

10. Cory, H., "Chiral devices - An overview of canonical problems," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 5-6, 805-829, 1995.
doi:10.1163/156939395X00929        Google Scholar

11. Zebiri, C., F. Benabdelaziz, and D. Sayad, "Surface waves investigation of a bianisotropic chiral substrate resonator," Progress In Electromagnetics Research B, Vol. 40, 399-414, 2012.
doi:10.2528/PIERB12032205        Google Scholar

12. Zebiri, C., M. Lashab, and F. Benabdelaziz, "Asymmetrical effects of bi-anisotropic substrate-superstrate sandwich structure on patch resonator," Progress In Electromagnetics Research B, Vol. 49, 319-337, 2013.
doi:10.2528/PIERB13012115        Google Scholar

13. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional curl operator and fractional chiro-waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1119-1129, 2007.        Google Scholar

14. Kopp, V. I., J. Park, M. Wlodawski, J. Singer, D. Neugroschl, and A. Z. Genack, "Chiral fibers: Microformed optical waveguides for polarization control, sensing, coupling, amplification, and switchin," Journal of Lightwave Technology, Vol. 32, No. 4, 605-613, 2014.
doi:10.1109/JLT.2013.2283495        Google Scholar

15. Ghaffar, A., M. Arif, Q.-A. Naqvi, and M.-A. Alkanhal, "Radiation properties of a uniaxial chiral quadratic inhomogeneous slab under oblique incidence," Optik - International Journal for Light and Electron Optics, Vol. 125, No. 4, 1589-1597, 2014.
doi:10.1016/j.ijleo.2013.10.014        Google Scholar

16. Panin, S. B., P. D. Smith, and A. Y. Poyedinchuk, "Elliptical to linear polarization transformation by a grating on a chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1885-1899, 2007.        Google Scholar

17. Lim, K. Y., P. K. Choudhury, and Z. Yusoff, "Chirofibers with helical windings - An analytical investigation," Optik, Vol. 121, No. 11, 980-987, 2010.
doi:10.1016/j.ijleo.2008.12.011        Google Scholar

18. Yang, S.-K. and S.-Y. Hsia, "Chiral composites as underwater acoustic attenuators?," IEEE Journal of Oceanic Engineering, Vol. 25, No. 1, 139-145, 2000.
doi:10.1109/48.820746        Google Scholar

19. Cloete, J. H., M. Bingle, and D. B. Davidson, "The role of chirality and resonance in synthetic microwave absorbers," AEU International Journal of Electronics and Communications, 2001.        Google Scholar

20. Bayatpur, F., A. V. Amirkhizi, and S. Nemat-Nasser, "Experimental characterization of chiral uniaxial bianisotropic composites at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 4, 1126-1135, 2012.
doi:10.1109/TMTT.2012.2184386        Google Scholar

21. Chen, X., B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., Vol. 71, 46610-46618, 2005.        Google Scholar

22. Eroglu, A. and J. K. Lee, "Far field radiation from an arbitrarily orientated Hertzian dipole in the presence of layered anisotropic medium," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 12, 3963-3973, 2005.
doi:10.1109/TAP.2005.859749        Google Scholar

23. Braaten, B. D., R. M. Nelson, and D. A. Rogers, "Input impedance and resonant frequency of a printed dipole with arbitrary length embedded in stratified uniaxial anisotropic dielectrics," IEEE Antennas Wireless Propag. Lett., Vol. 8, 806-810, 2009.
doi:10.1109/LAWP.2009.2021992        Google Scholar

24. Braaten, B. D., D. A. Rogers, and R. M. Nelson, "Multi-conductor spectral domain analysis of the mutual coupling between printed dipoles embedded in stratified uniaxial anisotropic dielectrics," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1886-1898, Apr. 2012.
doi:10.1109/TAP.2012.2186274        Google Scholar

25. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, Inc., 1992.

26. Di Ruscio, D., P. Burghignoli, P. Baccarelli, D. Comite, and A. Galli, "Spectral Method of Moments for planar structures with azimuthal symmetry," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2317-2322, Apr. 2014.
doi:10.1109/TAP.2014.2302831        Google Scholar

27. Pozar, D. M., "Improved computational efficiency for the method of moments solution of printed dipoles and patch," Electromagn., Vol. 3, 299-309, Jul.-Sep. 1983.        Google Scholar

28. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, 2008.

29. Swanson, Jr., D. G. and W. J. R. Hoefer, Microwave Circuit Modeling Using Electromagnetic Field Simulation, Artech House, 2003.

30. Davidson, D. B. and J. T. Aberle, "An introduction to the spectral domain Method-of-Moments formulations," IEEE Antennas Propag. Mag., Vol. 46, No. 3, 11-19, Jun. 2004.
doi:10.1109/MAP.2004.1374083        Google Scholar

31. Zang, S. R. and J. R. Bergmann, "Analysis of omnidirectional dual-reflector antenna and feeding horn using Method of Moments," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1534-1538, Mar. 2014.
doi:10.1109/TAP.2013.2296775        Google Scholar

32. Zebiri, C., S. Daoudi, F. Benabdelaziz, M. Lashab, D. Sayad, N. T. Ali, and R. A. Abd-Alhameed, "Gyro-chirality effect of bianisotropic substrate on the operational of rectangular microstrip patch antenna," International Journal of Applied Electromagnetics and Mechanics, 1-1, 2016, Preprint.        Google Scholar

33. Pozar, D., "Radiation and scattering from a microstrip patch on a uniaxial substrate," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 6, 613-621, Jun. 1987.
doi:10.1109/TAP.1987.1144161        Google Scholar

34. Pozar, D. M., "Input impedance and mutual coupling of rectangular microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 30, 1191-1196, Nov. 1982.
doi:10.1109/TAP.1982.1142934        Google Scholar

35. Park, S.-O. and C. A. Balanis, "Analytical technique to evaluate the asymptotic part of the impedance matrix of Sommerfeld-type integrals," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 5, 798-805, May 1997.
doi:10.1109/8.575625        Google Scholar

36. Bilotti, F., L. Vegni, and A. Toscano, "Radiation and scattering features of patch antennas with bianisotropic substrates," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 3, 449-456, Mar. 2003.
doi:10.1109/TAP.2003.809837        Google Scholar

37. Li, L.-W. and W.-Y. Yin, "Linear complex media," Encyclopedia of RF and Microwave Engineering, 694-717, John Wiley, New York, 2005.        Google Scholar

38. Li, K., S.-O. Park, H. Lee, J. Ma, B.-C. Kim, and H.-D. Choi, "Analytical technique to evaluate the asymptotic part of the impedance matrix of microstrip dipole on a uniaxial substrate," Progress In Electromagnetics Research, Vol. 35, 127-139, 2002.
doi:10.2528/PIER01061501        Google Scholar

39. Pan, G.-W., J. Tan, and J. D. Murphy, "Full-wave analysis of microstrip floating-line discontinuities," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 1, Feb. 1994.        Google Scholar

40. Park, S.-O., C. A. Balanis, and C. R. Birtcher, "Analytical evaluation of the asymptotic impedance matrix of a grounded dielectric slab with roof-top functions," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 2, 251-259, Feb. 1998.
doi:10.1109/8.660970        Google Scholar

41. Jackson, R. W. and D. M. Pozar, "Full-wave analysis of microstrip openend and gap discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, 1036-1042, Oct. 1985.        Google Scholar