Vol. 68
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-10-21
Conical Beam Monopole Antenna Design for Chinese Area Positioning System
By
Progress In Electromagnetics Research C, Vol. 68, 193-200, 2016
Abstract
This article describes the operational principle of the satellite-based Chinese Area Positioning System (CAPS) and proposes a monopole antenna for a large anchored buoy platform in harsh marine environment. The proposed antenna is highly omnidirectional with sufficiently wide half-power beamwidth (HPBW) greater than 40˚ (i.e., not less than ±20° swing) by using a conical ground plane, taking into account the geostationary satellite position, link budget, sea conditions, volume and cost. The impedance bandwidth defined by 10 dB return loss is 750 MHz (5.60-6.35 GHz), and the main lobe direction and the half-power beamwidth are about 46° and 43° at the operating frequency 5.885 GHz, respectively. The antenna prototype has been installed on-site to test its performance in sea. The results confirm that the proposed antenna is a suitable candidate for a variety of CAPS applications in China.
Citation
Feng Pang, Guoxiang Ai, Jungang Yin, Yue Ma, Chao Hu, Junxia Cui, Lihua Ma, Chan Hwang See, and Raed A. Abd-Alhameed, "Conical Beam Monopole Antenna Design for Chinese Area Positioning System," Progress In Electromagnetics Research C, Vol. 68, 193-200, 2016.
doi:10.2528/PIERC16083005
References

1. Niu, H.-N. and P. Li, "The implementation of inmarsat-C/GPS technology in buoy system," ournal of China Institute of Communications, Vol. 22, No. 5, 67-70, 2001.        Google Scholar

2. Zhang, R.-H., J. Zhu, J.-P. Xu, Y.-M. Liu, Q.-Q. Li, and T. Niu, "Argo global ocean data assimilation and its applications in short-term climate prediction and oceanic analysis," Chinese Journal of Atmospheric Sciences, Vol. 37, No. 2, 411-424, 2013.        Google Scholar

3. Zhang, S.-Y., Y. Lin, and X.-Y. Chi, "Study on argos transmitter terminal and its applications," Ocean Technology, Vol. 24, No. 1, 25-28, 2005.        Google Scholar

4. International Telecommunication Union "Recommendation ITU-R S.484-3. Station-keeping in longitude of geo-stationary satellites in the fixed-satellite service,", International Telecommunication Union Electronic Publishing Service, Geneva, 2004.        Google Scholar

5. Shi, H. L., G. X. Ai, Y. B. Han, et al. "Multi-life cycles utilization of retired satellites," Sci. China Ser. G-Phys. Mech. Astron., Vol. 52, No. 3, 323-327, 2009.
doi:10.1007/s11433-009-0055-8        Google Scholar

6. International Telecommunication Union "Recommendation ITU-R S.743-1, The coordination between satellite networks using slightly inclined geostationary-satellite orbits (GSOs) and between such networks and satellite networks using non-inclined GSO satellites,", International Telecommunication Union Electronic Publishing Service, Geneva, 2004.        Google Scholar

7. Wang, Z., et al. "An inmarsat BGAN terminal patch antenna array with unequal input impedance elements and conductor-backed ACPW series-feed network," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1642-1647, 2012.
doi:10.1109/TAP.2011.2180325        Google Scholar

8. Wang, L., et al. "Design of a new printed dipole antenna using in high latitudes for inmarsat," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 2011.        Google Scholar

9. McEwen, L. N. J., R. A. Abd-Alhameed, E. M. Ibrahim, P. S. Excell, and N. T. Ali, "Compact WLAN disc antennas," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 12, 1862-1864, 2002.
doi:10.1109/TAP.2002.807368        Google Scholar

10. Zhou, D., R. A. Abd-Alhameed, C. H. See, and P. S. Excell, "New circularly-polarised conical-beam microstrip patch antenna array for short-range communication systems," Microwave and Optical Technology Letters, Vol. 51, 78-81, Jan. 2009.
doi:10.1002/mop.23956        Google Scholar

11. Su, S. W., K. L. Wong, and C. L. Tang, "Ultra-wideband square planar monopole antenna for IEEE 802.16a operation in the 2–11 GHz band," Microwave and Optical Tech. Letters, Vol. 32, No. 4, 463-466, 2004.
doi:10.1002/mop.20337        Google Scholar

12. Zhang, F. F., et al. "Design and investigation of broadband monopole antenna loaded with nonfoster circuit," Progress In Electromagnetics Research C, Vol. 17, 254-255, 2010.        Google Scholar

13. Kim, J.-Y., N. Kim, S. Lee, and B.-C. Oh, "Triple band-notched UWB monopole antenna with two resonator structures," Microwave and Optical Technology Letters, Vol. 55, No. 1, 4-6, 2013.
doi:10.1002/mop.27275        Google Scholar

14. Go, H.-C. and Y.-W. Jang, "Multi-band modified fork-shaped microstrip monopole antenna with ground plane including dual-triangle portion," Electronics Letters, Vol. 40, No. 10, 2004.
doi:10.1049/el:20040404        Google Scholar

15. Chawanonphithak, Y. and C. Phongcharoenpanich, "Miniaturized dual-band π-shaped monopole antennas with modified rectangular ground plane," Proc. of 11th International Conference on Electrical Engineering Electronics, Computer, Telecommunications and Information Technology, ECTI-CON, 2014.        Google Scholar

16. Shah, S. A. A., M. F. Khan, S. Ullah, and J. A. Flint, "Design of a multi-band frequency reconfigurable planar monopole antenna using truncated ground plane for Wi-Fi, WLAN and WiMAX applications," International Conf. on Open Source Systems and Technologies, 2014.        Google Scholar

17. Antoniades, M. A. and G. V. Eleftheriades, "A compact multiband monopole antenna with a defected ground plane," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 2008.        Google Scholar

18. Gemio, J., J. P. Granados, and J. S. Castany, "Dual-band antenna with fractal-based ground plane for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.        Google Scholar

19. Hong, T., S.-X. Gong, Y. Liu, and W. Jiang, "Monopole antenna with quasi-fractal slotted ground plane for dual-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 2010.        Google Scholar

20. Elsheakh, D. N., H. A. Elsadek, E. A. Abdallah, H. Elhenawy, and M. F. Iskander, "Enhancement of microstrip monopole antenna bandwidth by using EBG structures," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.        Google Scholar

21. Aghdam, S. A. and S. M. H. Varkiani, "Small monopole antenna with semicircular ground plane for UWB applications with variable band-notch structure," Microwave and Optical Technology Letters, Vol. 55, No. 1, 12-14, 2013.
doi:10.1002/mop.27255        Google Scholar

22. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116        Google Scholar

23. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, November 1974.        Google Scholar