1. Choi, I., D. Y. Lee, and D. G. Lee, "Radar absorbing composite structures dispersed with nano-conductive particles," Compos. Struct., Vol. 122, 23, 2015.
doi:10.1016/j.compstruct.2014.11.040 Google Scholar
2. Li, Y. N., T. Wu, K. Y. Jin, Y. Qian, N. X. Qian, K. D. Jiang, W. H. Wu, and G. X. Tong, "Controllable synthesis and enhanced microwave absorbing properties of Fe3O4/NiFe2O4/Ni heterostructure porous rods," Appl. Surf. Sci., Vol. 387, 190, 2016.
doi:10.1016/j.apsusc.2016.06.103 Google Scholar
3. Lee, S. E., W. J. Lee, K. S. Oh, and C. G. Kim, "Broadband all fiber-reinforced composite radar absorbing structure integrated by inductive frequency selective carbon fiber fabric and carbon-nanotube-loaded glass fabrics," Carbon, Vol. 107, 564, 2016.
doi:10.1016/j.carbon.2016.06.005 Google Scholar
4. Eun, S. W., W. H. Choi, H. K. Jang, J. H. Shin, J. B. Kim, and C. G. Kim, "Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures," Compos. Sci. Technol., Vol. 116, 18, 2015.
doi:10.1016/j.compscitech.2015.04.001 Google Scholar
5. Liu, S. H., Electromagnetic Shielding and Radar Absorbing Material, 286-332, Chemistry Industry Press, 2013.
6. Li, W., T. L. Wu, W. Wang, P. C. Zhai, and J. G. Guan, "Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers," J. Appl. Phys., Vol. 116, 044110, 2014.
doi:10.1063/1.4891475 Google Scholar
7. Giordano, S., "Effective medium theory for dispersions of dielectric ellipsoids," J. Electrostat., Vol. 58, 59, 2003.
doi:10.1016/S0304-3886(02)00199-7 Google Scholar
8. Wu, M. Z., H. J. Zhang, and X. Yao, "Microwave characterization of ferrite particles," J. Phys. D: Appl. Phys., Vol. 34, 889, 2001.
doi:10.1088/0022-3727/34/6/310 Google Scholar
9. Smith, F. C., "Effective permittivity of dielectric honeycombs," IET Microw. Antenna. P, Vol. 146, 55, 1999.
doi:10.1049/ip-map:19990392 Google Scholar
10. Zhang, Y. J., J. H. Li, and Q. Sun, "Homogenization method for effective electromagnetic properties of composites," Chinese Journal of Radio Science, Vol. 24, 280, 2009. Google Scholar
11. He, Y. F., R. Z. Gong, X. Wang, and Q. Zhao, "Study on equivalent electromagnetic parameters and absorbing properties of honeycomb-structured absorbing materials," Acta. Physica. Sinica, Vol. 57, 5261, 2008. Google Scholar
12. Hasar, U. C., J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, "Differential uncertainty analysis for evaluation the accuracy of S-parameter retrieval methods for electromagnetic properties of metamaterial slabs," Opt. Express, Vol. 20, 29002, 2012.
doi:10.1364/OE.20.029002 Google Scholar
13. Hasar, U. C., J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, "Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions," Progress In Electromagnetics Research, Vol. 132, 425, 2012.
doi:10.2528/PIER12072412 Google Scholar
14. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
15. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617 Google Scholar
16. Akyurtlu, A. and A. G. Kussow, "Relationship between the Kramers-Kronig relations and negative index of refraction," Phys. Rev. A, Vol. 82, 055802, 2010.
doi:10.1103/PhysRevA.82.055802 Google Scholar
17. Peiponen, K.-E. and J. J. Saarinen, "Generalized KramersKronig relations in nonlinear optical- and THz-spectroscopy," Rep. Prog. Phys., Vol. 72, 056401, 2009.
doi:10.1088/0034-4885/72/5/056401 Google Scholar
18. Johansson, M., C. L. Holloway, and E. F. Kuester, "Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 2005.
doi:10.1109/TAP.2004.841320 Google Scholar