Vol. 52
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-15
Calculation and Analysis of the Effective Electromagnetic Parameters of Periodic Structural Radar Absorbing Material Using Simulation and Inversion Methods
By
Progress In Electromagnetics Research M, Vol. 52, 57-66, 2016
Abstract
Effective electromagnetic parameters (EEPs) of periodic structures fabricated mainly by carbonyl iron powders are calculated in this paper. A method of inverting the scattering parameters obtained from simulation software was used. The effect of the absorbent volume ratio and the cycle length on EEPs was studied and analyzed. The correlation of the shapes with EEPs was also researched. The empirical formulas were proposed to calculate EEPs, in which the interaction between two adjacent cells was considered. By using this method, any material could be designed as a periodic structure with controlled EEPs, and the values of EEPs were located between the electromagnetic parameter (EP) of air and that of the original material by a specific rule. The EEPs can be used to design new absorbers as the fundamental data of electromagnetic property of some fresh materials.
Citation
Ding Zhou, Xiaozhong Huang, Zuojuan Du, and Qiang Wang, "Calculation and Analysis of the Effective Electromagnetic Parameters of Periodic Structural Radar Absorbing Material Using Simulation and Inversion Methods," Progress In Electromagnetics Research M, Vol. 52, 57-66, 2016.
doi:10.2528/PIERM16090504
References

1. Choi, I., D. Y. Lee, and D. G. Lee, "Radar absorbing composite structures dispersed with nano-conductive particles," Compos. Struct., Vol. 122, 23, 2015.
doi:10.1016/j.compstruct.2014.11.040        Google Scholar

2. Li, Y. N., T. Wu, K. Y. Jin, Y. Qian, N. X. Qian, K. D. Jiang, W. H. Wu, and G. X. Tong, "Controllable synthesis and enhanced microwave absorbing properties of Fe3O4/NiFe2O4/Ni heterostructure porous rods," Appl. Surf. Sci., Vol. 387, 190, 2016.
doi:10.1016/j.apsusc.2016.06.103        Google Scholar

3. Lee, S. E., W. J. Lee, K. S. Oh, and C. G. Kim, "Broadband all fiber-reinforced composite radar absorbing structure integrated by inductive frequency selective carbon fiber fabric and carbon-nanotube-loaded glass fabrics," Carbon, Vol. 107, 564, 2016.
doi:10.1016/j.carbon.2016.06.005        Google Scholar

4. Eun, S. W., W. H. Choi, H. K. Jang, J. H. Shin, J. B. Kim, and C. G. Kim, "Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures," Compos. Sci. Technol., Vol. 116, 18, 2015.
doi:10.1016/j.compscitech.2015.04.001        Google Scholar

5. Liu, S. H., Electromagnetic Shielding and Radar Absorbing Material, 286-332, Chemistry Industry Press, 2013.

6. Li, W., T. L. Wu, W. Wang, P. C. Zhai, and J. G. Guan, "Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers," J. Appl. Phys., Vol. 116, 044110, 2014.
doi:10.1063/1.4891475        Google Scholar

7. Giordano, S., "Effective medium theory for dispersions of dielectric ellipsoids," J. Electrostat., Vol. 58, 59, 2003.
doi:10.1016/S0304-3886(02)00199-7        Google Scholar

8. Wu, M. Z., H. J. Zhang, and X. Yao, "Microwave characterization of ferrite particles," J. Phys. D: Appl. Phys., Vol. 34, 889, 2001.
doi:10.1088/0022-3727/34/6/310        Google Scholar

9. Smith, F. C., "Effective permittivity of dielectric honeycombs," IET Microw. Antenna. P, Vol. 146, 55, 1999.
doi:10.1049/ip-map:19990392        Google Scholar

10. Zhang, Y. J., J. H. Li, and Q. Sun, "Homogenization method for effective electromagnetic properties of composites," Chinese Journal of Radio Science, Vol. 24, 280, 2009.        Google Scholar

11. He, Y. F., R. Z. Gong, X. Wang, and Q. Zhao, "Study on equivalent electromagnetic parameters and absorbing properties of honeycomb-structured absorbing materials," Acta. Physica. Sinica, Vol. 57, 5261, 2008.        Google Scholar

12. Hasar, U. C., J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, "Differential uncertainty analysis for evaluation the accuracy of S-parameter retrieval methods for electromagnetic properties of metamaterial slabs," Opt. Express, Vol. 20, 29002, 2012.
doi:10.1364/OE.20.029002        Google Scholar

13. Hasar, U. C., J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, "Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions," Progress In Electromagnetics Research, Vol. 132, 425, 2012.
doi:10.2528/PIER12072412        Google Scholar

14. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104        Google Scholar

15. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617        Google Scholar

16. Akyurtlu, A. and A. G. Kussow, "Relationship between the Kramers-Kronig relations and negative index of refraction," Phys. Rev. A, Vol. 82, 055802, 2010.
doi:10.1103/PhysRevA.82.055802        Google Scholar

17. Peiponen, K.-E. and J. J. Saarinen, "Generalized KramersKronig relations in nonlinear optical- and THz-spectroscopy," Rep. Prog. Phys., Vol. 72, 056401, 2009.
doi:10.1088/0034-4885/72/5/056401        Google Scholar

18. Johansson, M., C. L. Holloway, and E. F. Kuester, "Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 2005.
doi:10.1109/TAP.2004.841320        Google Scholar