1. King, R. W. P., R. B. Mack, and S. S. Sandler, Arrays of Cylindrical Dipoles, Cambridge University Press, 1968.
doi:10.1017/CBO9780511735820
2. Yagi, H. and S. Uda, "Projector of the sharpest beam of electric waves," Proc. Imperial Academy Japan, Vol. 2, 49-52, 1926.
doi:10.2183/pjab1912.2.49 Google Scholar
3. Altshuler, E. E., "A monopole array driven from a rectangular waveguide," IRE Trans. Antennas and Propag., Vol. 10, 558-560, 1962.
doi:10.1109/TAP.1962.1137919 Google Scholar
4. Jones, E. A. and W. T. Joines, "Design of Yagi-Uda antennas using genetic algorithms," IEEE Trans. Antennas and Propag., Vol. 45, 1386-1392, 1997.
doi:10.1109/8.623128 Google Scholar
5. Sun, B.-H., S.-G. Zhou, Y.-F. Wei, and Q.-Z. Liu, "Modified two-element Yagi-Uda antenna with tunable beams," Progress In Electromagnetics Research, Vol. 100, 175-187, 2010.
doi:10.2528/PIER09111501 Google Scholar
6. Formato, R. A., "Improving bandwidth of Yagi-Uda arrays," Wireless Engineering and Technology, Vol. 3, 18-24, 2012.
doi:10.4236/wet.2012.31003 Google Scholar
7. Yeo, J., J.-I. Lee, and J.-T. Park, "Broadband series-fed dipole pair antenna with parasitic strip pair director," Progress In Electromagnetics Research C, Vol. 45, 1-13, 2013.
doi:10.2528/PIERC13081601 Google Scholar
7. Yeo, J., J.-I. Lee, and J.-T. Park, "Broadband series-fed dipole pair antenna with parasitic strip pair director," Progress In Electromagnetics Research C, Vol. 45, 1-13, 2013.
doi:10.2528/PIERC13081601 Google Scholar
8. Liu, H., S. Gao, and T.-H. Loh, "Small director array for low-profile smart antennas achieving higher gain," IEEE Trans. Antennas and Propag., Vol. 61, 162-168, 2013.
doi:10.1109/TAP.2012.2219841 Google Scholar
9. Wang, Z., X. L. Liu, Y.-Z. Yin, J. H. Wang, and Z. Li, "A novel design of folded dipole for broadband printed Yagi-Uda antenna," Progress In Electromagnetics Research C, Vol. 46, 23-30, 2014.
doi:10.2528/PIERC13111803 Google Scholar
10. Zhang, Z., X.-Y. Cao, J. Gao, S.-J. Li, and X. Liu, "Compact microstrip magnetic Yagi antenna and array with vertical polarization based on substrate integrated waveguide," Progress In Electromagnetics Research C, Vol. 59, 135-141, 2015.
doi:10.2528/PIERC15090907 Google Scholar
11. Nesterenko, M. V., V. A. Katrich, Yu.M. Penkin, V.M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, 2011.
doi:10.1007/978-1-4419-7850-9
12. Nesterenko, M. V., "Analytical methods in the theory of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 21, 299-328, 2010. Google Scholar
13. Nesterenko, M. V., V. A. Katrich, S. L. Berdnik, Y. M. Penkin, and V. M. Dakhov, "Application of the generalized method of induced EMF for investigation of characteristics of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 26, 149-178, 2010.
doi:10.2528/PIERB10052902 Google Scholar
14. Penkin, D. Y., V. A. Katrich, Y. M. Penkin, M. V. Nesterenko, V. M. Dakhov, and S. L. Berdnik, "Electrodynamic characteristics of a radial impedance vibrator on a conduction sphere," Progress In Electromagnetics Research B, Vol. 62, 137-151, 2015.
doi:10.2528/PIERB14120102 Google Scholar
15. Yeliseyeva, N. P., S. L. Berdnik, V. A. Katrich, and M. V. Nesterenko, "Electrodynamic characteristics of horizontal impedance vibrator located over a finite-dimensional perfectly conducting screen," Progress In Electromagnetics Research B, Vol. 63, 275-288, 2015.
doi:10.2528/PIERB15043003 Google Scholar
16. Penkin, Y. M., V. A. Katrich, and M. V. Nesterenko, "Development of fundamental theory of thin impedance vibrators," Progress In Electromagnetics Research M, Vol. 45, 185-193, 2016.
doi:10.2528/PIERM15120105 Google Scholar