Vol. 54
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-17
Profile Reconstruction Utilizing Forward-Backward Time-Stepping with the Integration of Automated Edge-Preserving Regularization Technique for Object Detection Applications
By
Progress In Electromagnetics Research M, Vol. 54, 125-135, 2017
Abstract
A regularization is integrated with Forward-Backward Time-Stepping (FBTS) method which is formulated in time-domain utilizing Finite-Difference Time-Domain (FDTD) method to solve the nonlinear and ill-posed problem arisen in the microwave inverse scattering problem. FBTS method based on a Polak-Ribiète-Polyak conjugate gradient method is easily trapped in the local minima. Thus, we extend our work with the integration of edge-preserving regularization technique due to its ability to smooth and preserve the edges containing important information for reconstructing the dielectric profiles of the targeted object. In this paper, we propose a deterministic relaxation with Mean Square Error algorithm known as DrMSE in FBTS and integrate it with the automated edge-preserving regularization technique. Numerical simulations are carried out and prove that the reconstructed results are more accurate by calculating the edge-preserving parameter automatically.
Citation
Guang Yong, Kismet Anak Hong Ping, Shafrida Sahrani, Mohamad Hamiruce Marhaban, Mohd Iqbal Sariphn, Toshifumi Moriyama, and Takashi Takenaka, "Profile Reconstruction Utilizing Forward-Backward Time-Stepping with the Integration of Automated Edge-Preserving Regularization Technique for Object Detection Applications," Progress In Electromagnetics Research M, Vol. 54, 125-135, 2017.
doi:10.2528/PIERM16111001
References

1. Pastorino, M., Microwave Imaging, 1st Ed., John Wiley, 2010.
doi:10.1002/9780470602492

2. Kim, Y. J., L. Jofre, F. De Flaviis, and M. Q. Feng, "Microwave reflection tomographic array for damage detection of civil structures," IEEE Trans. Antennas Propag., Vol. 51, No. 11, 3022-3032, 2003.
doi:10.1109/TAP.2003.818786        Google Scholar

3. Benedetti, M., M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, "An innovative microwave-imaging technique for nondestructive evaluation: Applications to civil structures monitoring and biological bodies inspection," IEEE Trans. Instrum. Meas., Vol. 55, 1878-1884, 2006.
doi:10.1109/TIM.2006.884287        Google Scholar

4. Langenberg, K. J., K. Mayer, and R. Marklein, "Nondestructive testing of concrete with electromagnetic and elastic waves: Modeling and imaging," Cem. Concr. Compos., Vol. 28, No. 4, 370-383, 2006.
doi:10.1016/j.cemconcomp.2006.02.010        Google Scholar

5. Randazzo, A. and C. Estatico, "A regularisation scheme for electromagnetic inverse problems: Application to crack detection in civil structures," Nondestruct. Test. Eval., Vol. 27, No. 3, 189-197, 2012.
doi:10.1080/10589759.2012.665920        Google Scholar

6. Qaddoumi, N., R. Zoughi, and G. W. Carriveau, "Microwave detection and depth determination of disbonds in low-permittivity and low-loss thick sandwich composites," Res. Nondestruct. Eval., Vol. 8, No. 1, 51-63, 1996.
doi:10.1080/09349849609409587        Google Scholar

7. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation - Overview and recent advances," IEEE Instrum. Meas. Mag., Vol. 10, No. 2, 26-38, 2007.
doi:10.1109/MIM.2007.364985        Google Scholar

8. Zoughi, R. and S. Kharkovsky, "Microwave and millimetre wave sensors for crack detection," Fatigue Fract. Eng. Mater. Struct., Vol. 31, No. 8, 695-713, 2008.
doi:10.1111/j.1460-2695.2008.01255.x        Google Scholar

9. Deng, Y. and X. Liu, "Electromagnetic imaging methods for nondestructive evaluation applications," Sensors, Vol. 11, No. 12, 11774-11808, 2011.
doi:10.3390/s111211774        Google Scholar

10. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer, 2000.
doi:10.1007/978-94-015-1303-6

11. Pastorino, M., "Recent inversion procedures for microwave imaging in biomedical, subsurface detection and nondestructive evaluation applications," Measurement: Journal of the International Measurement Confederation, Vol. 36, No. 3-4, 257-269, 2004.
doi:10.1016/j.measurement.2004.09.006        Google Scholar

12. Pastorino, M. and A. Randazzo, "Buried object detection by an inexact newton method applied to nonlinear inverse scattering," Int. J. Microw. Sci. Technol., Vol. 2012, 2012.        Google Scholar

13. Estatico, C., A. Fedeli, M. Pastorino, and A. Randazzo, "Buried object detection by means of a Lp Banach-space inversion procedure," Radio Sci., Vol. 50, No. 1, 41-51, Jan. 2015.
doi:10.1002/2014RS005542        Google Scholar

14. Rufus, E. and Z. C. Alex, "Microwave imaging system for the detection of buried objects using UWB antenna - An experimental study," PIERS Proceedings, 786-788, Kuala Lumpur, Malaysia, Mar. 27-30, 2012.        Google Scholar

15. Hagness, S. C., "Microwave imaging in medicine: Promises and future challenges," Proc. URSI Gen. Assem., 53706, 2008.        Google Scholar

16. Semenov, S., "Microwave tomography: Review of the progress towards clinical applications," Philos. Trans. A. Math. Phys. Eng. Sci., Vol. 367, 3021-3042, 2009.
doi:10.1098/rsta.2009.0092        Google Scholar

17. Meaney, P. M., K. D. Paulsen, and D. College, "Challenges on microwave imaging supported by clinical results," Proc. Int. Work. Biol. Eff. Electromagn. Fields, 10-14, 2010.        Google Scholar

18. Hassan, M. and A. M. El-Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Rev. Biomed. Eng., Vol. 4, 103-118, 2011.
doi:10.1109/RBME.2011.2169780        Google Scholar

19. Wei, N. S., K. A. H. Ping, L. S. Yee, W. A. B. W. Zainal Abidin, T. Moriyama, and T. Takenaka, "Reconstruction of extremely dense breast composition utilizing inverse scattering technique integrated with frequency-hopping approach," ARPN J. Eng. Appl. Sci., Vol. 10, No. 18, 8479-8484, 2015.        Google Scholar

20. Salvad, A., M. Pastorino, R. Monleone, A. Randazzo, T. Bartesaghi, G. Bozza, and S. Poretti, "Microwave imaging of foreign bodies inside wood trunks," IST 2008 - IEEE Workshop on Imaging Systems and Techniques Proceedings, 88-93, 2008.
doi:10.1109/IST.2008.4659947        Google Scholar

21. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer, 2012.

22. Massa, A., D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, "Parallel GA-based approach for microwave imaging applications," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3118-3127, 2005.
doi:10.1109/TAP.2005.856311        Google Scholar

23. Donelli, M. and A. Massa, "A computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1761-1776, 2005.
doi:10.1109/TMTT.2005.847068        Google Scholar

24. Rekanos, I. T., "Time-domain inverse scattering using Lagrange multipliers: An iterative FDTD-based optimization technique," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 271-289, 2003.
doi:10.1163/156939303322235824        Google Scholar

25. Winters, D. W., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Trans. Antennas Propagat., Vol. 54, No. 11, 3517-3528, 2006.
doi:10.1109/TAP.2006.884296        Google Scholar

26. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 12, 1609-1626, 2000.
doi:10.1163/156939300X00383        Google Scholar

27. Takenaka, T., T. Tanaka, H. Harada, and S. He, "FDTD approach to time-domain inverse scattering problem for stratified lossy media," Microw. Opt. Technol. Lett., Vol. 16, No. 5, 292-296, 1997.
doi:10.1002/(SICI)1098-2760(19971205)16:5<292::AID-MOP8>3.0.CO;2-A        Google Scholar

28. Ping, K. A. H., T. Moriyama, T. Takenaka, and T. Tanaka, "Two-dimensional forward-backward time-Stepping approach for tumor detection in dispersive breast tissues," 2009 Mediterranean Microw. Symp. (MMS), 1-4, 2009.        Google Scholar

29. Blanc-Feraud, L., P. Charbonnier, G. Aubert, and M. Barlaud, "Nonlinear image processing: Modeling and fast algorithm for regularization with edge detection," Proc. IEEE-ICIP, 474-477, 1995.        Google Scholar

30. Lobel, P., C. Picbota, L. Blanc Feraud, and M. Barlaud, "Conjugate gradient algorithm with edge-preserving regularization for image reconstruction from experimental data," IEEE Antennas Propag. Soc. Int. Symp. 1996, AP-S. Dig., Vol. 1, 644-647, 1996.
doi:10.1109/APS.1996.549680        Google Scholar

31. Chew Chie, A. S., K. A. Hong Ping, Y. Guang, N. S. Wei, and N. Rajaee, "Preliminary results of integrating Tikhonov's regularization in Forward-Backward Time-Stepping technique for object detection," Appl. Mech. Mater., Vol. 833, 170-175, Apr. 2016.
doi:10.4028/www.scientific.net/AMM.833.170        Google Scholar

32. Kaltenbacher, B., A. Kirchner, and B. Vexler, "Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems," Inverse Probl., Vol. 27, No. 12, 125008, Dec. 2011.
doi:10.1088/0266-5611/27/12/125008        Google Scholar

33. Qin, Y. M. and I. R. Ciric, "Dielectric body reconstruction with current modelling and Tikhonov regularisation," Electron. Lett., Vol. 29, No. 16, 1427, 1993.
doi:10.1049/el:19930956        Google Scholar

34. Calvetti, D., S. Morigi, L. Reichel, and F. Sgallari, "Tikhonov regularization and the L-curve for large discrete ill-posed problems," J. Comput. Appl. Math., Vol. 123, 423-446, 2000.
doi:10.1016/S0377-0427(00)00414-3        Google Scholar

35. Charbonnier, P., L. Blanc-Féraud, G. Aubert, and M. Barlaud, "Deterministic edge-preserving regularization in computed imaging," IEEE Trans. Image Process., Vol. 6, No. 2, 298-311, 1997.
doi:10.1109/83.551699        Google Scholar

36. Yong, G., K. A. H. Ping, A. S. C. Chie, S. W. Ng, and T. Masri, "Preliminary study of Forward-Backward Time-Stepping technique with edge-preserving regularization for object detection applications," 2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), 77-81, 2015.
doi:10.1109/ICBAPS.2015.7292222        Google Scholar

37. Hadamard, J., "Lectures on Cauchy's problem in linear partial differential equations," Physiology, 334, 1923.        Google Scholar

38. Hebert, T. and R. Leahy, "A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors," IEEE Trans. Med. Imaging, 194-202, 1989.
doi:10.1109/42.24868        Google Scholar

39. Green, P. J., "Bayesian reconstructions from emission tomography data using a modified EM algorithm," IEEE Trans. Med. Imaging, Vol. 9, No. 1, 84-93, Mar. 1990.
doi:10.1109/42.52985        Google Scholar

40. Geman, S. and D. E. M. Clure, "Bayesian image analysis: An application to single photon emission tomography," Proc. Stat. Comput. Sect., 12-18, 1985.        Google Scholar

41. Aubert, G., M. Barlaud, L. Blanc-Feraud, and P. Charbonnier, "A deterministic algorithm for edge-preserving computed imaging using Legendre transform," Proceedings of the 12th IAPR International Conference on Pattern Recognition (Cat. No. 94CH3440-5), 188-191, 1994.
doi:10.1109/ICPR.1994.577154        Google Scholar

42. Charbonnier, P., L. Blanc-Feraud, G. Aubert, and M. Barlaud, "Two deterministic half-quadratic regularization algorithms for computed imaging," Proceedings of 1st International Conference on Image Processing, Vol. 2, 168-172, 1994.        Google Scholar