Vol. 71
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-01-13
Low Frequency Behavior of CVD Graphene from DC to 40 GHz
By
Progress In Electromagnetics Research C, Vol. 71, 1-7, 2017
Abstract
Electromagnetic behaviour of chemical vapor deposition (CVD) graphene at low frequencies is still a mystery. No conclusion is made from the experimental point of views. Here, we systematically investigate the electromagnetic response of graphene at microwave frequencies, which are from direct current (DC) to 40 GHz. Both a coplanar transmission line embedded with different-sized graphene akes of 48 × 48 and 48 × 240 um2 and a microwave termination based on the graphene sheet of 6 × 6 mm2 are manufactured through the chemical vapor deposition (CVD) and standard microfabrication procedures. We conclude that graphene behaves as a frequency-independent surface resistance at the microwave frequencies, which is consistent with the theoretical model by rigorously solving the Maxwell's equations with the Kubo formula. The work offers a simple, accurate, and conclusive electromagnetic analysis to graphene and thus is of great help to design graphene incorporated microwave components and devices.
Citation
Rong Wang Salahuddin Raju Mansun Chan Li Jun Jiang , "Low Frequency Behavior of CVD Graphene from DC to 40 GHz ," Progress In Electromagnetics Research C, Vol. 71, 1-7, 2017.
doi:10.2528/PIERC16111901
http://www.jpier.org/PIERC/pier.php?paper=16111901
References

1. Novoselov, K. S., A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Vol. 438, No. 7065, 197-200, 2005.
doi:10.1038/nature04233

2. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nat. Mater., Vol. 6, No. 3, 183-191, 2007.
doi:10.1038/nmat1849

3. Du, X., I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene," Nat. Nanotechnol., Vol. 3, No. 8, 491-495, 2008.
doi:10.1038/nnano.2008.199

4. Neto, A. C., F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., Vol. 81, No. 1, 109-162, 2009.
doi:10.1103/RevModPhys.81.109

5. Geim, A. K., "Graphene: Status and prospects," Science, Vol. 324, No. 5934, 1530-1534, 2009.
doi:10.1126/science.1158877

6. Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," J. Phys.: Condens. Matter, Vol. 19, No. 2, 026222, 2006.
doi:10.1088/0953-8984/19/2/026222

7. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452

8. Hanson, G. W., "Dyadic Green’s functions for an anisotropic, non-local model of biased graphene," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 747-757, 2008.
doi:10.1109/TAP.2008.917005

9. Jablan, M., H. Buljan, and M. Soljacic, "Plasmonics in graphene at infrared frequencies," Phys. Rev. B, Vol. 80, No. 24, 245435, 2009.
doi:10.1103/PhysRevB.80.245435

10. Mikhailov, S. A. and K. Ziegler, "New electromagnetic mode in graphene," Phys. Rev. Lett., Vol. 99, No. 1, 016803, 2007.
doi:10.1103/PhysRevLett.99.016803

11. Lee, S. H., M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, and S. Y. Choi, "Switching terahertz waves with gate-controlled active graphene metamaterials," Nat. Mater., Vol. 11, No. 11, 936-941, 2012.
doi:10.1038/nmat3433

12. Bao, Q., H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, "Broadband graphene polarizer," Nat. Photonics, Vol. 5, No. 7, 411-415, 2011.
doi:10.1038/nphoton.2011.102

13. Yao, Y., M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, "Broad electrical tuning of graphene-loaded plasmonic antennas," Nano Lett., Vol. 13, No. 3, 1257-1264, 2013.
doi:10.1021/nl3047943

14. Awan, S. A., A. Lombardo, A. Colli, G. Privitera, T. S. Kulmala, J. M. Kivioja, M. Koshino, and A. C. Ferrari, "Transport conductivity of graphene at RF and microwave frequencies," 2D Mater., Vol. 3, No. 1, 015010, 2016.
doi:10.1088/2053-1583/3/1/015010

15. Chang, Y. C., C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, "Realization of mid-infrared graphene hyperbolic metamaterials," Nat. Commun., Vol. 7, 10568, 2016.
doi:10.1038/ncomms10568

16. Llatser, I., C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcon, and D. N. Chigrin, "Graphene-based nano-patch antenna for terahertz radiation," Photonics Nanostruct. Fundam. Appl., Vol. 10, No. 4, 353-358, 2012.
doi:10.1016/j.photonics.2012.05.011

17. Horng, J., C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, "Drude conductivity of Dirac fermions in graphene," Phys. Rev. B, Vol. 83, No. 16, 165113, 2011.
doi:10.1103/PhysRevB.83.165113

18. Abedinpour, S. H., G. Vignale, A. Principi, M. Polini, W. K. Tse, and A. H. MacDonald, "Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets," Phys. Rev. B, Vol. 84, No. 4, 045429, 2011.
doi:10.1103/PhysRevB.84.045429

19. Li, X., W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, Vol. 324, No. 5932, 1312-1314, 2009.
doi:10.1126/science.1171245

20. Ferrari, A. C., J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, and S. Roth, "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett., Vol. 97, No. 18, 187401, 2006.
doi:10.1103/PhysRevLett.97.187401

21. Blake, P., E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Appl. Phys. Lett., Vol. 91, No. 6, 063124, 2007.
doi:10.1063/1.2768624