1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
2. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 1995.
3. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC, 1993.
4. Joseph, R. M. and A. Taflove, "Spatial soliton deflection mechanism indicated by FDTD Maxwell's equations modeling," IEEE Photonics Technology Letters, Vol. 6, 1251-1254, 1994.
doi:10.1109/68.329654 Google Scholar
5. Van, V. and S. K. Chaudhuri, "A hybrid implicit-explicit FDTD scheme for nonlinear optical waveguide modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 540-545, 1999.
doi:10.1109/22.763152 Google Scholar
6. Joseph, R. M. and A. Taflove, "FDTD Maxwell's equations models for nonlinear electrodynamics and optics," IEEE Transactions on Antennas and Propagation, Vol. 45, 364-374, 1997.
doi:10.1109/8.558652 Google Scholar
7. Ziolkowski, R., "Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear kerr medium exhibiting a finite response time," Journal of the Optical Society of America B, Vol. 10, 186-198, 1993.
doi:10.1364/JOSAB.10.000186 Google Scholar
8. Fisher, A., D. White, and G. Rodrigue, "An efficient vector finite element method for nonlinear electromagnetic modeling," Journal of Computational Physics, Vol. 225, 1331-1346, 2007.
doi:10.1016/j.jcp.2007.01.031 Google Scholar
9. Chen, J., Q. H. Liu, M. Chai, and J. A. Mix, "A nonspurious 3-D vector discontinuous Galerkin finite-element time-domain method," IEEE Microwave and Wireless Components Letters, Vol. 20, 1-3, 2010.
doi:10.1109/LMWC.2009.2035941 Google Scholar
10. Zhu, B., J. Chen, W. Zhong, and Q. H. Liu, "A hybrid FETD-FDTD method with nonconforming meshes," Communications in Computational Physics, Vol. 9, 828-842, 2011.
doi:10.4208/cicp.230909.140410s Google Scholar
11. Tobon, L. E., Q. Ren, Q. T. Sun, J. Chen, and Q. H. Liu, "New efficient implicit time integration method for DGTD applied to sequential multidomain and multiscale problems," Progress In Electromagnetics Research, Vol. 151, 1-8, 2015.
doi:10.2528/PIER14112201 Google Scholar
12. Zhu, B., H. Yang, and J. Chen, "A novel finite element time domain method for nonlinear Maxwell's equations based on the parametric quadratic programming method," Microwave and Optical Technology Letters, Vol. 57, 1640-1645, 2015.
doi:10.1002/mop.29170 Google Scholar
13. Cottle, R. W. and G. B. Dantzig, "Complementary pivot theory of mathematical programming," Linear Algebra Applications, Vol. 1, 103-125, 1982.
doi:10.1016/0024-3795(68)90052-9 Google Scholar
14. Ferris, M. C. and J. S. Pang, "Engineering and economic applications of complementarity problems," SIAM Review, Vol. 39, 669-713, 1997.
doi:10.1137/S0036144595285963 Google Scholar
15. Zhang, H. W., S. Y. He, and X. S. Li, "Two aggregate-function-based algorithms for analysis of 3D frictional contact by linear complementarity problem formulation," Computer Methods in Applied Mechanics and Engineering, Vol. 194, 5139-5158, 2005.
doi:10.1016/j.cma.2005.01.002 Google Scholar
16. Fischer, A., "A special Newton-type optimization method," Optimization, Vol. 24, 269-284, 1992.
doi:10.1080/02331939208843795 Google Scholar
17. Lu, T., P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell equations and PML boundary conditions," Journal of Computational Physics, Vol. 200, 549-580, 2004.
doi:10.1016/j.jcp.2004.02.022 Google Scholar
18. Lu, T., W. Cai, and P. Zhang, "Discontinuous Galerkin time-domain method for GPR simulation in dispersive media," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, 72-80, 2005.
doi:10.1109/TGRS.2004.838350 Google Scholar
19. Mohammadian, A. H., V. Shankar, and W. F. Hall, "Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure," Computer Physics Communications, Vol. 68, 175-196, 1991.
doi:10.1016/0010-4655(91)90199-U Google Scholar
20. Zhu, B., J. Chen, W. Zhong, and Q. H. Liu, "A hybrid finite-element/finite-difference method with an implicit-explicit time-stepping scheme for Maxwell's equations," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 25, 495-506, 2012.
doi:10.1002/jnm.1853 Google Scholar
21. Luo, M. and Q. H. Liu, "Spectral element method for band structures of three-dimensional anisotropic photonic crystals," Physical Review E, Vol. 80, 1-7, 2009. Google Scholar
22. Fan, G. and Q. H. Liu, "A strongly well-posed PML in lossy media," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 97-100, 2003.
doi:10.1109/LAWP.2003.814776 Google Scholar