Vol. 55
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-13
Fast and Stable Integration Method for the Aperture Admittance of an Open-Ended Coaxial Probe Terminated into Low-Loss Dielectrics
By
Progress In Electromagnetics Research M, Vol. 55, 211-219, 2017
Abstract
The utilization of an open-ended coaxial probe for characterization of dielectric properties or quantitative nondestructive detection of defects in materials firstly requires evaluating the aperture admittance. For the case that the probe is terminated into low-loss dielectrics backed by a conducting sheet, however, the admittance expression encounters poles in the vicinity of the path of integration, resulting in low convergence rate or even overflow in numerical quadrature. In this study, locations and properties of the singularities of the integral formulation for generally lossy, low-loss, and lossless dielectric slabs backed by a perfectly conducting sheet are investigated above all. Subsequently, making use of the contour integral technique, a fast and stable integration method is put forward to calculate the admittance integral formulation. Finally, numerical experiments are conducted to justify the validity and efficiency of the proposed integration method for low-loss dielectric cases by comparison with the traditional integration method as well as commercial FEM software.
Citation
Licheng Zhou, Yang Ju, Peiyu Wang, and Yongmao Pei, "Fast and Stable Integration Method for the Aperture Admittance of an Open-Ended Coaxial Probe Terminated into Low-Loss Dielectrics," Progress In Electromagnetics Research M, Vol. 55, 211-219, 2017.
doi:10.2528/PIERM16120604
References

1. Gregory, A. P. and R. N. Clarke, "A review of RF and microwave techniques for dielectric measurements on polar liquids," IEEE Trans. Dielectr. Electr. Insul., Vol. 13, No. 4, 727-743, Aug. 2006.
doi:10.1109/TDEI.2006.1667730

2. Pournaropoulos, C. L. and D. K. Misra, "The co-axial aperture electromagnetic sensor and its application in material characterization," Meas. Sci. Technol., Vol. 8, No. 11, 1191-1202, Nov. 1997.
doi:10.1088/0957-0233/8/11/001

3. Ju, Y., M. Saka, and H. Abé, "Microwave nondestructive detection of delamination in IC packages utilizing open-ended coaxial line sensor technique," NDT & E Int., Vol. 32, No. 5, 259-264, 1999.
doi:10.1016/S0963-8695(98)00055-3

4. Ju, Y., M. Saka, and H. Abé, "Detection of delamination in IC packages using the phase of microwaves," NDT & E Int., Vol. 34, No. 1, 49-56, 2001.
doi:10.1016/S0963-8695(00)00044-X

5. Ju, Y., M. Saka, and H. Abé, "NDI of delamination in IC packages using millimeter-waves," IEEE Trans. Instrum. Meas., Vol. 50, No. 4, 1019-1023, Aug. 2001.
doi:10.1109/19.948319

6. Popovic, D., L. McCartney, C. Beasley, M. Lazebnik, M. Okoniewski, S. Hagness, and J. Booske, "Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1713-May 1721, 2005.
doi:10.1109/TMTT.2005.847111

7. Yang, S.-H., K.-B. Kim, and J.-S. Kang, "Detection of surface crack in film-coated metals using an open-ended coaxial line sensor and dual microwave frequencies," NDT & E Int., Vol. 54, 91-95, 2013.
doi:10.1016/j.ndteint.2012.11.002

8. Zhang, L., X. Shi, F. You, P. Liu, and X. Dong, "Improved circuit model of open-ended coaxial probe for measurement of the biological tissue dielectric properties between megahertz and gigahertz," Physiol. Meas., Vol. 34, No. 10, N83-N96, Oct. 2013.
doi:10.1088/0967-3334/34/10/N83

9. Athey, T., M. Stuchly, and S. Stuchly, "Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part I," IEEE Trans. Microw. Theory Tech., Vol. 30, No. 1, 82-86, Jan. 1982.
doi:10.1109/TMTT.1982.1131021

10. Mehta, P., K. Chand, D. Narayanswamy, D. G. Beetner, R. Zoughi, and W. V. Stoecker, "Microwave reflectometry as a novel diagnostic tool for detection of skin cancers," IEEE Trans. Instrum. Meas., Vol. 55, No. 4, 1309-1316, Aug. 2006.
doi:10.1109/TIM.2006.876566

11. Li, L. L., N. H. Ismael, L. S. Taylor, and C. C. Davis, "Flanged coaxial microwave probes for measuring thin moisture layers," IEEE Trans. Biomed. Eng., Vol. 39, No. 1, 49-57, Jan. 1992.
doi:10.1109/10.108127

12. Alanen, E., T. Lahtinen, and J. Nuutinen, "Variational formulation of open-ended coaxial line in contact with layered biological medium," IEEE Trans. Biomed. Eng., Vol. 45, No. 10, 1241-1248, Oct. 1998.
doi:10.1109/10.720202

13. Van Damme, S., A. Franchois, D. De Zutter, and L. Taerwe, "Nondestructive determination of the steel fiber content in concrete slabs with an open-ended coaxial probe," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 11, 2511-2521, Nov. 2004.
doi:10.1109/TGRS.2004.837332

14. Wagner, N., M. Schwing, and A. Scheuermann, "Numerical 3-D FEM and experimental analysis of the open-ended coaxial line technique for microwave dielectric spectroscopy on soil," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 2, 880-893, Feb. 2014.
doi:10.1109/TGRS.2013.2245138

15. Jiao, X., W. Jin, and X. Yang, "An additional S-shaped structure for sensitivity improvement of coaxial probe for permittivity determination of low loss materials," Meas. Sci. Technol., Vol. 26, No. 5, 055701, May 2015.
doi:10.1088/0957-0233/26/5/055701

16. Mosig, J. R., J. C. E. Besson, M. Gexfabry, and F. E. Gardiol, "Reflection of an open-ended coaxial line and application to nondestructive measurement of materials," IEEE Trans. Instrum. Meas., Vol. 30, No. 1, 46-51, Mar. 1981.
doi:10.1109/TIM.1981.6312437

17. Pournaropoulos, C. L. and D. Misra, "A study on the coaxial aperture electromagnetic sensor and its application in material characterization," IEEE Trans. Instrum. Meas., Vol. 43, No. 2, 111-115, Apr. 1994.
doi:10.1109/19.293405

18. Bakhtiari, S., S. I. Ganchev, and R. Zoughi, "Analysis of radiation from an open-ended coaxial line into stratified dielectrics," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 7, 1261-1267, Jul. 1994.
doi:10.1109/22.299765

19. Qiu, Z., X. Li, and W. Jiang, "On stability of formulation of open-ended coaxial probe for measurement of electromagnetic properties of finite-thickness materials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 501-511, 2009.
doi:10.1163/156939309787612347

20. Li, C. L. and K. M. Chen, "Determination of electromagnetic properties of materials using flanged open-ended coaxial probe-full-wave analysis," IEEE Trans. Instrum. Meas., Vol. 44, No. 1, 19-27, Feb. 1995.
doi:10.1109/19.368108

21. Misra, D., "On the measurement of the complex permittivity of materials by an open-ended coaxial probe," IEEE Microw. Guided Wave Lett., Vol. 5, No. 5, 161-163, May 1995.
doi:10.1109/75.374085

22. Panariello, G., L. Verolino, and G. Vitolo, "Efficient and accurate full-wave analysis of the open-ended coaxial cable," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 7, 1304-1309, Jul. 2001.
doi:10.1109/22.932251

23. Asvestas, J. S., "Radiation of a coaxial line into a half-space," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1624-1631, Jun. 2006.
doi:10.1109/TAP.2006.875479

24. Okoniewski, M., J. Anderson, E. Okoniewski, K. Caputa, and S. S. Stuchly, "Further analysis of open-ended dielectric sensors," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 8, 1986-Aug. 1989, 1995.
doi:10.1109/22.402291

25. Hagl, D. A., D. Popovic, S. C. Hagness, J. H. Booske, and M. Okoniewski, "Sensing volume of open-ended coaxial probes for dielectric characterization of breast tissue at microwave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1194-1206, Apr. 2003.
doi:10.1109/TMTT.2003.809626

26. Hassan, A. K. A., D. M. Xu, and Y. J. Zhang, "Modeling and analysis of finite-flange open-ended coaxial probe for planar and convex surface coating material testing by FDTD method," Microw. Opt. Technol. Lett., Vol. 24, No. 2, 117-120, Jan. 2000.
doi:10.1002/(SICI)1098-2760(20000120)24:2<117::AID-MOP10>3.0.CO;2-D

27. Hoshina, S., Y. Kanai, and M. Miyakawa, "A numerical study on the measurement region of an open-ended coaxial probe used for complex permittivity measurement," IEEE Trans. Magn., Vol. 37, No. 5, 3311-3314, Sep. 2001.
doi:10.1109/20.952602

28. Olmi, R., M. Bini, R. Nesti, G. Pelosi, and C. Riminesi, "Improvement of the permittivity measurement by a 3D full-wave analysis of a finite flanged coaxial probe," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 217-232, 2004.
doi:10.1163/156939304323062103

29. Huang, R. and D. Zhang, "Analysis of open-ended coaxial probes by using a two-dimensional finite-difference frequency-domain method," IEEE Trans. Instrum. Meas., Vol. 57, No. 5, 931-939, May 2008.
doi:10.1109/TIM.2007.913830

30. Hilland, J. and T. Friisø, "Evaluation of modelling routines for on-line implementation of the open-ended coaxial probe," Meas. Sci. Technol., Vol. 9, No. 5, 790-796, May 1998.
doi:10.1088/0957-0233/9/5/008

31. Berube, D., F. M. Ghannouchi, and P. Savard, "A comparative study of four open-ended coaxial probe models for permittivity measurements of lossy dielectric/biological materials at microwave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 10, 1928-1934, Oct. 1996.
doi:10.1109/22.539951

32. Levine, H. and C. H. Papas, "Theory of the circular diffraction antenna," J. Appl. Phys., Vol. 22, No. 1, 29-43, Jan. 1951.
doi:10.1063/1.1699816

33. Irzinski, E. P., "The input admittance of a TEM excited annular slot antenna," IEEE Trans. Antennas Propag., Vol. 23, No. 6, 829-834, Nov. 1975.
doi:10.1109/TAP.1975.1141187

34. Ganchev, S., N. Qaddoumi, S. Bakhtiari, and R. Zoughi, "Calibration and measurement of dielectric properties of finite thickness composite sheets with open-ended coaxial sensors," IEEE Trans. Instrum. Meas., Vol. 44, No. 6, 1023-1029, Dec. 1995.
doi:10.1109/19.475149

35. Misra, D., M. Chabra, B. Epstein, M. Mirotznik, and K. Foster, "Noninvasive electrical characterization of materials at microwave frequencies using an open-ended coaxial line: Test of an improved calibration technique," IEEE Trans. Microwave Theory Tech., Vol. 38, 8-14, Jan. 1990.
doi:10.1109/22.44150

36. Blackham, D. V. and R. D. Pollard, "An improved technique for permittivity measurements using a coaxial probe," IEEE Trans. Instrum. Meas., Vol. 46, No. 5, 1093-1099, Oct. 1997.
doi:10.1109/19.676718

37. Wu, M., X. Yao, J. Zhai, and L. Zhang, "Determination of microwave complex permittivity of particulate materials," Meas. Sci. Technol., Vol. 12, No. 11, 1932-1937, Nov. 2001.
doi:10.1088/0957-0233/12/11/324

38. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, England, 1986.

39. Ahlfors, L. V., Complex Analysis, McGraw-Hill, New York, 1979.

40. Gay-Balmaz, P. and J. R. Mosig, "Three-dimensional planar radiating structures in stratified media," Int. J. Microw. Millimeter-Wave Comput.-Aided Eng., Vol. 7, No. 5, 330-343, Sep. 1997.
doi:10.1002/(SICI)1522-6301(199709)7:5<330::AID-MMCE3>3.0.CO;2-L

41. Hollinger, R. D., K. A. Jose, A. Tellakula, V. V. Varadan, and V. K. Varadan, "Microwave characterization of dielectric materials from 8 to 110 GHz using a free-space setup," Microw. Opt. Technol. Lett., Vol. 26, No. 2, 100-105, Jul. 2000.
doi:10.1002/1098-2760(20000720)26:2<100::AID-MOP10>3.0.CO;2-3