1. Gregory, A. P. and R. N. Clarke, "A review of RF and microwave techniques for dielectric measurements on polar liquids," IEEE Trans. Dielectr. Electr. Insul., Vol. 13, No. 4, 727-743, Aug. 2006.
doi:10.1109/TDEI.2006.1667730 Google Scholar
2. Pournaropoulos, C. L. and D. K. Misra, "The co-axial aperture electromagnetic sensor and its application in material characterization," Meas. Sci. Technol., Vol. 8, No. 11, 1191-1202, Nov. 1997.
doi:10.1088/0957-0233/8/11/001 Google Scholar
3. Ju, Y., M. Saka, and H. Abé, "Microwave nondestructive detection of delamination in IC packages utilizing open-ended coaxial line sensor technique," NDT & E Int., Vol. 32, No. 5, 259-264, 1999.
doi:10.1016/S0963-8695(98)00055-3 Google Scholar
4. Ju, Y., M. Saka, and H. Abé, "Detection of delamination in IC packages using the phase of microwaves," NDT & E Int., Vol. 34, No. 1, 49-56, 2001.
doi:10.1016/S0963-8695(00)00044-X Google Scholar
5. Ju, Y., M. Saka, and H. Abé, "NDI of delamination in IC packages using millimeter-waves," IEEE Trans. Instrum. Meas., Vol. 50, No. 4, 1019-1023, Aug. 2001.
doi:10.1109/19.948319 Google Scholar
6. Popovic, D., L. McCartney, C. Beasley, M. Lazebnik, M. Okoniewski, S. Hagness, and J. Booske, "Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1713-May 1721, 2005.
doi:10.1109/TMTT.2005.847111 Google Scholar
7. Yang, S.-H., K.-B. Kim, and J.-S. Kang, "Detection of surface crack in film-coated metals using an open-ended coaxial line sensor and dual microwave frequencies," NDT & E Int., Vol. 54, 91-95, 2013.
doi:10.1016/j.ndteint.2012.11.002 Google Scholar
8. Zhang, L., X. Shi, F. You, P. Liu, and X. Dong, "Improved circuit model of open-ended coaxial probe for measurement of the biological tissue dielectric properties between megahertz and gigahertz," Physiol. Meas., Vol. 34, No. 10, N83-N96, Oct. 2013.
doi:10.1088/0967-3334/34/10/N83 Google Scholar
9. Athey, T., M. Stuchly, and S. Stuchly, "Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part I," IEEE Trans. Microw. Theory Tech., Vol. 30, No. 1, 82-86, Jan. 1982.
doi:10.1109/TMTT.1982.1131021 Google Scholar
10. Mehta, P., K. Chand, D. Narayanswamy, D. G. Beetner, R. Zoughi, and W. V. Stoecker, "Microwave reflectometry as a novel diagnostic tool for detection of skin cancers," IEEE Trans. Instrum. Meas., Vol. 55, No. 4, 1309-1316, Aug. 2006.
doi:10.1109/TIM.2006.876566 Google Scholar
11. Li, L. L., N. H. Ismael, L. S. Taylor, and C. C. Davis, "Flanged coaxial microwave probes for measuring thin moisture layers," IEEE Trans. Biomed. Eng., Vol. 39, No. 1, 49-57, Jan. 1992.
doi:10.1109/10.108127 Google Scholar
12. Alanen, E., T. Lahtinen, and J. Nuutinen, "Variational formulation of open-ended coaxial line in contact with layered biological medium," IEEE Trans. Biomed. Eng., Vol. 45, No. 10, 1241-1248, Oct. 1998.
doi:10.1109/10.720202 Google Scholar
13. Van Damme, S., A. Franchois, D. De Zutter, and L. Taerwe, "Nondestructive determination of the steel fiber content in concrete slabs with an open-ended coaxial probe," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 11, 2511-2521, Nov. 2004.
doi:10.1109/TGRS.2004.837332 Google Scholar
14. Wagner, N., M. Schwing, and A. Scheuermann, "Numerical 3-D FEM and experimental analysis of the open-ended coaxial line technique for microwave dielectric spectroscopy on soil," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 2, 880-893, Feb. 2014.
doi:10.1109/TGRS.2013.2245138 Google Scholar
15. Jiao, X., W. Jin, and X. Yang, "An additional S-shaped structure for sensitivity improvement of coaxial probe for permittivity determination of low loss materials," Meas. Sci. Technol., Vol. 26, No. 5, 055701, May 2015.
doi:10.1088/0957-0233/26/5/055701 Google Scholar
16. Mosig, J. R., J. C. E. Besson, M. Gexfabry, and F. E. Gardiol, "Reflection of an open-ended coaxial line and application to nondestructive measurement of materials," IEEE Trans. Instrum. Meas., Vol. 30, No. 1, 46-51, Mar. 1981.
doi:10.1109/TIM.1981.6312437 Google Scholar
17. Pournaropoulos, C. L. and D. Misra, "A study on the coaxial aperture electromagnetic sensor and its application in material characterization," IEEE Trans. Instrum. Meas., Vol. 43, No. 2, 111-115, Apr. 1994.
doi:10.1109/19.293405 Google Scholar
18. Bakhtiari, S., S. I. Ganchev, and R. Zoughi, "Analysis of radiation from an open-ended coaxial line into stratified dielectrics," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 7, 1261-1267, Jul. 1994.
doi:10.1109/22.299765 Google Scholar
19. Qiu, Z., X. Li, and W. Jiang, "On stability of formulation of open-ended coaxial probe for measurement of electromagnetic properties of finite-thickness materials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 501-511, 2009.
doi:10.1163/156939309787612347 Google Scholar
20. Li, C. L. and K. M. Chen, "Determination of electromagnetic properties of materials using flanged open-ended coaxial probe-full-wave analysis," IEEE Trans. Instrum. Meas., Vol. 44, No. 1, 19-27, Feb. 1995.
doi:10.1109/19.368108 Google Scholar
21. Misra, D., "On the measurement of the complex permittivity of materials by an open-ended coaxial probe," IEEE Microw. Guided Wave Lett., Vol. 5, No. 5, 161-163, May 1995.
doi:10.1109/75.374085 Google Scholar
22. Panariello, G., L. Verolino, and G. Vitolo, "Efficient and accurate full-wave analysis of the open-ended coaxial cable," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 7, 1304-1309, Jul. 2001.
doi:10.1109/22.932251 Google Scholar
23. Asvestas, J. S., "Radiation of a coaxial line into a half-space," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1624-1631, Jun. 2006.
doi:10.1109/TAP.2006.875479 Google Scholar
24. Okoniewski, M., J. Anderson, E. Okoniewski, K. Caputa, and S. S. Stuchly, "Further analysis of open-ended dielectric sensors," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 8, 1986-Aug. 1989, 1995.
doi:10.1109/22.402291 Google Scholar
25. Hagl, D. A., D. Popovic, S. C. Hagness, J. H. Booske, and M. Okoniewski, "Sensing volume of open-ended coaxial probes for dielectric characterization of breast tissue at microwave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1194-1206, Apr. 2003.
doi:10.1109/TMTT.2003.809626 Google Scholar
26. Hassan, A. K. A., D. M. Xu, and Y. J. Zhang, "Modeling and analysis of finite-flange open-ended coaxial probe for planar and convex surface coating material testing by FDTD method," Microw. Opt. Technol. Lett., Vol. 24, No. 2, 117-120, Jan. 2000.
doi:10.1002/(SICI)1098-2760(20000120)24:2<117::AID-MOP10>3.0.CO;2-D Google Scholar
27. Hoshina, S., Y. Kanai, and M. Miyakawa, "A numerical study on the measurement region of an open-ended coaxial probe used for complex permittivity measurement," IEEE Trans. Magn., Vol. 37, No. 5, 3311-3314, Sep. 2001.
doi:10.1109/20.952602 Google Scholar
28. Olmi, R., M. Bini, R. Nesti, G. Pelosi, and C. Riminesi, "Improvement of the permittivity measurement by a 3D full-wave analysis of a finite flanged coaxial probe," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 217-232, 2004.
doi:10.1163/156939304323062103 Google Scholar
29. Huang, R. and D. Zhang, "Analysis of open-ended coaxial probes by using a two-dimensional finite-difference frequency-domain method," IEEE Trans. Instrum. Meas., Vol. 57, No. 5, 931-939, May 2008.
doi:10.1109/TIM.2007.913830 Google Scholar
30. Hilland, J. and T. Friisø, "Evaluation of modelling routines for on-line implementation of the open-ended coaxial probe," Meas. Sci. Technol., Vol. 9, No. 5, 790-796, May 1998.
doi:10.1088/0957-0233/9/5/008 Google Scholar
31. Berube, D., F. M. Ghannouchi, and P. Savard, "A comparative study of four open-ended coaxial probe models for permittivity measurements of lossy dielectric/biological materials at microwave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 10, 1928-1934, Oct. 1996.
doi:10.1109/22.539951 Google Scholar
32. Levine, H. and C. H. Papas, "Theory of the circular diffraction antenna," J. Appl. Phys., Vol. 22, No. 1, 29-43, Jan. 1951.
doi:10.1063/1.1699816 Google Scholar
33. Irzinski, E. P., "The input admittance of a TEM excited annular slot antenna," IEEE Trans. Antennas Propag., Vol. 23, No. 6, 829-834, Nov. 1975.
doi:10.1109/TAP.1975.1141187 Google Scholar
34. Ganchev, S., N. Qaddoumi, S. Bakhtiari, and R. Zoughi, "Calibration and measurement of dielectric properties of finite thickness composite sheets with open-ended coaxial sensors," IEEE Trans. Instrum. Meas., Vol. 44, No. 6, 1023-1029, Dec. 1995.
doi:10.1109/19.475149 Google Scholar
35. Misra, D., M. Chabra, B. Epstein, M. Mirotznik, and K. Foster, "Noninvasive electrical characterization of materials at microwave frequencies using an open-ended coaxial line: Test of an improved calibration technique," IEEE Trans. Microwave Theory Tech., Vol. 38, 8-14, Jan. 1990.
doi:10.1109/22.44150 Google Scholar
36. Blackham, D. V. and R. D. Pollard, "An improved technique for permittivity measurements using a coaxial probe," IEEE Trans. Instrum. Meas., Vol. 46, No. 5, 1093-1099, Oct. 1997.
doi:10.1109/19.676718 Google Scholar
37. Wu, M., X. Yao, J. Zhai, and L. Zhang, "Determination of microwave complex permittivity of particulate materials," Meas. Sci. Technol., Vol. 12, No. 11, 1932-1937, Nov. 2001.
doi:10.1088/0957-0233/12/11/324 Google Scholar
38. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, Cambridge University Press, 1986.
39. Ahlfors, L. V., Complex Analysis, McGraw-Hill, 1979.
40. Gay-Balmaz, P. and J. R. Mosig, "Three-dimensional planar radiating structures in stratified media," Int. J. Microw. Millimeter-Wave Comput.-Aided Eng., Vol. 7, No. 5, 330-343, Sep. 1997.
doi:10.1002/(SICI)1522-6301(199709)7:5<330::AID-MMCE3>3.0.CO;2-L Google Scholar
41. Hollinger, R. D., K. A. Jose, A. Tellakula, V. V. Varadan, and V. K. Varadan, "Microwave characterization of dielectric materials from 8 to 110 GHz using a free-space setup," Microw. Opt. Technol. Lett., Vol. 26, No. 2, 100-105, Jul. 2000.
doi:10.1002/1098-2760(20000720)26:2<100::AID-MOP10>3.0.CO;2-3 Google Scholar