Vol. 57
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-06-19
Cotton Crop Biophysical Parameter Study Using Hybrid/Compact Polarimetric RISAT-1 SAR Data
By
Progress In Electromagnetics Research M, Vol. 57, 185-196, 2017
Abstract
A hybrid-polarity architecture, consisting of transmitting circular polarisation and receiving two orthogonal linear polarisation and also their relative phase, was used to calculate four Stokes parameters. Different parameters like Degree of Polarisation, Alpha angle, Entropy, Anisotropy, Radar vegetation Index and decompositions like Raney decomposition (m-δ), Freeman-2 and 3 component decompositions were derived from these hybrid data. Crop biophysical parameters viz. plant height, plant age and plant biomass of cotton crops grown under two different environments, i.e., rainfed and irrigated in Guajrat, India were studied with respect to derived polarimetric parameters. Right circular transmitted and horizontally (RH) and vertically (RV) received backscatter values show good relation with the plant height, age and biomass. RH backscatter -13 dB to -7 dB and RV backscatter from -13 to -10dB were observed for crop biophysical parameters. Volume component of all decomposition showed strong response to the increase in height, age and biomass of the plant. Radar Vegetation index (RVI) values have also shown significant increase from 0.6 to 0.7 with increasing age of the crop. The rate of growth was slow in the initial phase, but fast post mid-July for both early and late sown cases. The polarimetric parameters were found significantly correlated to the above plant biophysical parameters.
Citation
Viral A. Dave, Dipanwita Haldar, Rucha Dave, Arundhati Misra, and Vyas Pandey, "Cotton Crop Biophysical Parameter Study Using Hybrid/Compact Polarimetric RISAT-1 SAR Data," Progress In Electromagnetics Research M, Vol. 57, 185-196, 2017.
doi:10.2528/PIERM16121903
References

1. Bouvet, A., T. L. Toan, and N. Lam-Dao, "Monitoring of the rice cropping system in the Mekong Delta using ENVISAT/ASAR dual polarisation data," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 2, 517-526, Feb. 2009.
doi:10.1109/TGRS.2008.2007963        Google Scholar

2. Charbonneau, F. J., B. Brisco, R. K. Raney, H. McNairn, C. Liu, P. Vachon, J. Shang, R. De Abreu, C. Champagne, A. Merzouki, and T. Geldsetzer, "Compact polarimetry overview and applications assessment," Can. J. Remote Sens., Vol. 36, Suppl. 2, S298-S315, 2010.        Google Scholar

3. Cloude, S. R., D. G. Goodenough, and H. Chen, "Compact decomposition theory," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 1, Jan. 2012.
doi:10.1109/LGRS.2011.2158983        Google Scholar

4. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Geoscience and Remote Sensing Letters, Vol. 34, No. 2, Mar. 1996.        Google Scholar

5. Freeman, A., "Fitting a two component scattering model to polarimetric SAR data from forests," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 8, 2583-2592, 2007.
doi:10.1109/TGRS.2007.897929        Google Scholar

6. Freeman, A. and S. L. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 3, 963-973, 1998.
doi:10.1109/36.673687        Google Scholar

7. Freeman, J., J. D. Villasenor, H. P. Klein, and J. Groot, "On the use of multi-frequency and polarimetric radar backscatter features for classification of agricultural crops," Int. J. Remote Sensing, Vol. 15, No. 9, 1799-1812, 1994.
doi:10.1080/01431169408954210        Google Scholar

8. Haldar, D., A. Das, S. Mohan, O. Pal, R. S. Hooda, and M. Chakraborty, "Assessment of L band SAR data at different polarisation combinations for crop and other landuse classification," Progress In Electromagnetics Research B, Vol. 36, 303-321, 2012.
doi:10.2528/PIERB11071106        Google Scholar

9. Haldar, D., P. Rana, M. Yadav, R. S. Hooda, and M. Chakraborty, "Time series analysis of co-polarisation phase difference (PPD) for winter field crops using polarimetric C-band SAR data," International Journal of Remote Sensing, Vol. 37, No. 16, 3753-3770.
doi:10.1080/01431161.2016.1204024        Google Scholar

10. Jaan, P., E. C. Koeniguer, and M. T. Hallikainen, "Alternatives to target entropy and alpha angle in SAR polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 7, Jul. 2009.        Google Scholar

11. Jackson, T. J. and T. J. Schmugge, "Vegetation effects on the microwave emission of soils," Remote Sens. Environ., Vol. 36, No. 3, 203-212, Jun. 1991.
doi:10.1016/0034-4257(91)90057-D        Google Scholar

12. Jin, Y. Q. and C. Liu, "Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks," Int. J. Remote Sens., Vol. 18, No. 4, 971-979, 1997.
doi:10.1080/014311697218863        Google Scholar

13. Kim, Y. J. and J. Van Zyl, "A time-series approach to estimate soil moisture using polarimetric radar data," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 8, 2519-2527, Aug. 2009.
doi:10.1109/TGRS.2009.2014944        Google Scholar

14. Kim, Y., T. Jackson, and R. Bindlish, "Radar vegetation index for estimating the vegetation water content of rice and soybean," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 4, Jul. 2012.        Google Scholar

15. Lee, J. S., M. R. Grunes, and E. Pottier, "Quantitative comparison of classification capability: Fully polarimetric versus dual-and single-polarisation SAR," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 11, 2343-2351, 2001.
doi:10.1109/36.964970        Google Scholar

16. Maity, S., C. Patnaik, and S. Panigrahy, "Analysis of temporal backscattering of cotton crops using a semi-empirical model," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 3, 577-587, Mar. 2004.
doi:10.1109/TGRS.2003.821888        Google Scholar

17. Panigrahi, R. K. and A. K. Mishra, "An unsupervised classification of scattering behaviour using hybrid polarimetry," IET Radar, Sonar & Navigation, Vol. 7, No. 3, 270-276, Mar. 2013.
doi:10.1049/iet-rsn.2012.0207        Google Scholar

18. Pottier, E., J. S. Lee, and F. F. Laurent, "Advanced concepts," PolSARpro v3.0 - Lecture Notes.        Google Scholar

19. Raney, R. K., "Comparing compact and quadrature polarimetric SAR performance," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 6, June 2016.
doi:10.1109/LGRS.2016.2550863        Google Scholar

20. Raney, R. K., "Decomposition of hybrid-polarity SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, November 2007.        Google Scholar

21. Raney, R. K., "Hybrid-polarity SAR architecture," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, Nov. 2007.        Google Scholar

22. Schotten, C. G. J., W. W. L. Van Rooy, and L. L. F. Janssen, "Assessment of the capabilities of multi-temporal ERS-1 SAR data to discriminate between agricultural crops," Int. J. Remote Sensing, Vol. 16, No. 14, 2619-2637, 1995.
doi:10.1080/01431169508954580        Google Scholar

23. Shivany, R., M. Chabert, and J. Y. Tourneret, "Estimation of the degree of polarization for hybrid/compact and linear dual-pol SAR intensity images: Principles and applications," IEEE Geoscience and Remote Sensing Letters, Vol. 51, No. 1, Jan. 2013.        Google Scholar

24. Skriver, H., T. S. Morten, and A. G. Thomsen, "Multitemporal C- and L-band polarimetric signatures of crops," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2413-2429, 1999.
doi:10.1109/36.789639        Google Scholar

25. Thota, S., H. S. Srivastava, P. K. Sharma, K. Dhiraj, and P. Patel, "Study of hybrid polarimetric parameters generated from Risat-1 SAR data for various land cover targets," International Journal of Advancement in Remote Sensing, GIS and Geography (IJARSGG), Vol. 3, No. 1, 32-42, 2015.        Google Scholar

26. Toan, L. T., H. Laur, E. Mougin, and A. Lopes, "Multitemporal and dual-polarisation observations of agricultural vegetation covers by X-band SAR images," IEEE Trans. Geosci. Remote Sens., Vol. 27, 709-717, Nov. 1989.        Google Scholar

27. Toan, L. T., F. Ribbes, L. F. Wang, N. Floury, K. H. Ding, J. A. Kong, M. Fujita, and T. Kurosu, "Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results," IEEE Trans. Geosci. Remote Sens., Vol. 35, 41-56, Jan. 1997.
doi:10.1109/36.551933        Google Scholar

28. Tucker, C. J., "Red and photographic infrared linear combinations for monitoring vegetation," Remote Sens. Environ., Vol. 8, No. 2, 127-150, May 1979.
doi:10.1016/0034-4257(79)90013-0        Google Scholar

29. Turkar, V., R. Deo, Y. S. Rao, S. Mohan, and A. Das, "Classification accuracy of multi-frequency and multi-polarisation SAR images for various land covers," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, No. 3, 936-941, Jun. 2012.
doi:10.1109/JSTARS.2012.2192915        Google Scholar

30. Wigneron, J. P., P. Ferrazzoli, A. Olioso, P. Bertuzzi, and A. Chanzy, "A simple approach to monitor crop biomass from C-band radar data," Remote Sens. Environ., Vol. 69, No. 2, 179-188, Aug. 1999.
doi:10.1016/S0034-4257(99)00011-5        Google Scholar