1. Du, L., H. Liu, Z. Bao, and M. Xing, "Radar HRRP target recognition based on higher order spectra," IEEE Trans. Signal Process., Vol. 53, No. 7, 2359-2368, 2005.
doi:10.1109/TSP.2005.849161 Google Scholar
2. Li, H. J. and S. H. Yang, "Using range profiles as feature vectors to identify aerospace objects," IEEE Trans. Antennas Propag., Vol. 41, No. 3, 261-268, 1993.
doi:10.1109/8.233138 Google Scholar
3. Wang, J., Y. Li, and K. Chen, "Radar high-resolution range profile recognition via geodesic weighted sparse representation," IET Radar, Sonar Navig., Vol. 9, No. 1, 75-83, 2015.
doi:10.1049/iet-rsn.2014.0113 Google Scholar
4. Zyweck, A. and R. E. Bogner, "Radar target classification of commercial aircraft," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 2, 598-606, 1996.
doi:10.1109/7.489504 Google Scholar
5. Kim, K. T., D. K. Seo, and H. T. Kim, "Efficient radar target recognition using the MUSIC algorithm and invariant features," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 325-337, 2002.
doi:10.1109/8.999623 Google Scholar
6. Guo, Z. and S. Li, "One-dimensional frequency-domain features for aircraft recognition from radar range profiles," IEEE Trans. Aerosp. Electron. Syst., Vol. 46, No. 4, 1880-1892, 2010.
doi:10.1109/TAES.2010.5595601 Google Scholar
7. Chen, V. C. and D. C. Washington, "Radar range profile analysis with natural frame time-frequency representation," Proc. SPIE Wavelet Appl. IV, Vol. 3078, 433-448, 1997.
doi:10.1117/12.271736 Google Scholar
8. Du, L., Y. Ma, B. Wang, and H. Liu, "Noise-robust classification of ground moving targets based on time-frequency feature from micro-doppler signature," IEEE Sens. J., Vol. 14, No. 8, 2672-2682, 2014.
doi:10.1109/JSEN.2014.2314219 Google Scholar
9. Han, S. K. and H. T. Kim, "Efficient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601 Google Scholar
10. Zhang, X., Z. Liu, S. Liu, and G. Li, "Time-frequency feature extraction of HRRP using AGR and NMF for SAR ATR," Journal of Electrical and Computer Engineering, Vol. 2015, 1-10, 2015. Google Scholar
11. Kim, K., I. Choi, and H. Kim, "Efficient radar target classification using adaptive joint time-frequency processing," IEEE Trans. Antennas Propag., Vol. 48, No. 12, 1789-1801, 2000.
doi:10.1109/8.901267 Google Scholar
12. Thayaparan, T., S. Abrol, E. Riseborough, et al. "Analysis of radar micro-Doppler signatures from experimental helicopter and human data," Eur. Signal Process. Conf., 289-299, 2006. Google Scholar
13. Lampropoulos, G. A., T. Thayaparan, and N. Xie, "Fusion of time-frequency distributions and applications to radar signals," J. Electron. Imaging, Vol. 15, No. 2, 1-17, 2006. Google Scholar
14. Sejdic, E., I. Djurovic, and J. Jiang, "Time-frequency feature representation using energy concentration: An overview of recent advances," Digit. Signal Process. A Rev. J., Vol. 19, No. 1, 153-183, 2009.
doi:10.1016/j.dsp.2007.12.004 Google Scholar
15. Guo, Z., D. Li, and B. Zhang, "Survey of radar target recognition using one-dimensional high range resolution profiles," Systems Engineering and Electronics, Vol. 35, No. 1, 53-60, 2013. Google Scholar
16. LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner, "Gradient based learning applied to document recognition," Proc. IEEE, Vol. 86, No. 11, 2278-2324, 1998.
doi:10.1109/5.726791 Google Scholar
17. LeCun, Y., Y. Bengio, and G. Hinton, "Deep learning," Nat. Methods, Vol. 521, 436-447, 2015.
doi:10.1038/nature14539 Google Scholar
18. Lunden, J. and V. Koivunen, "Deep learning for HRRP-based target recognition in multistatic radar systems," IEEE Radar Conf., 2016. Google Scholar