Vol. 55
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-03-13
A Time-Frequency Feature Fusion Algorithm Based on Neural Network for HRRP
By
Progress In Electromagnetics Research M, Vol. 55, 63-71, 2017
Abstract
In this paper, a feature fusion algorithm is proposed for automatic target recognition based on High Resolution Range Profiles (HRRP). The proposed algorithm employs Convolution Neural Network (CNN) to extract fused feature from the time-frequency features of HRRP automatically. The time-frequency features used include linear transform and bilinear transform. The coding of the CNN's largest output node is the target category, and the output is compared with a threshold to decide whether the target is classified to a pre-known class or an unknown class. Simulations by four different aircraft models show that the proposed feature fusion algorithm has higher target recognition performance than single features.
Citation
Lele Yuan , "A Time-Frequency Feature Fusion Algorithm Based on Neural Network for HRRP," Progress In Electromagnetics Research M, Vol. 55, 63-71, 2017.
doi:10.2528/PIERM16123002
http://www.jpier.org/PIERM/pier.php?paper=16123002
References

1. Du, L., H. Liu, Z. Bao, and M. Xing, "Radar HRRP target recognition based on higher order spectra," IEEE Trans. Signal Process., Vol. 53, No. 7, 2359-2368, 2005.
doi:10.1109/TSP.2005.849161

2. Li, H. J. and S. H. Yang, "Using range profiles as feature vectors to identify aerospace objects," IEEE Trans. Antennas Propag., Vol. 41, No. 3, 261-268, 1993.
doi:10.1109/8.233138

3. Wang, J., Y. Li, and K. Chen, "Radar high-resolution range profile recognition via geodesic weighted sparse representation," IET Radar, Sonar Navig., Vol. 9, No. 1, 75-83, 2015.
doi:10.1049/iet-rsn.2014.0113

4. Zyweck, A. and R. E. Bogner, "Radar target classification of commercial aircraft," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 2, 598-606, 1996.
doi:10.1109/7.489504

5. Kim, K. T., D. K. Seo, and H. T. Kim, "Efficient radar target recognition using the MUSIC algorithm and invariant features," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 325-337, 2002.
doi:10.1109/8.999623

6. Guo, Z. and S. Li, "One-dimensional frequency-domain features for aircraft recognition from radar range profiles," IEEE Trans. Aerosp. Electron. Syst., Vol. 46, No. 4, 1880-1892, 2010.
doi:10.1109/TAES.2010.5595601

7. Chen, V. C. and D. C. Washington, "Radar range profile analysis with natural frame time-frequency representation," Proc. SPIE Wavelet Appl. IV, Vol. 3078, 433-448, 1997.
doi:10.1117/12.271736

8. Du, L., Y. Ma, B. Wang, and H. Liu, "Noise-robust classification of ground moving targets based on time-frequency feature from micro-doppler signature," IEEE Sens. J., Vol. 14, No. 8, 2672-2682, 2014.
doi:10.1109/JSEN.2014.2314219

9. Han, S. K. and H. T. Kim, "Efficient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601

10. Zhang, X., Z. Liu, S. Liu, and G. Li, "Time-frequency feature extraction of HRRP using AGR and NMF for SAR ATR," Journal of Electrical and Computer Engineering, Vol. 2015, 1-10, 2015.

11. Kim, K., I. Choi, and H. Kim, "Efficient radar target classification using adaptive joint time-frequency processing," IEEE Trans. Antennas Propag., Vol. 48, No. 12, 1789-1801, 2000.
doi:10.1109/8.901267

12. Thayaparan, T., et al., "Analysis of radar micro-Doppler signatures from experimental helicopter and human data," Eur. Signal Process. Conf., 289-299, 2006.

13. Lampropoulos, G. A., T. Thayaparan, and N. Xie, "Fusion of time-frequency distributions and applications to radar signals," J. Electron. Imaging, Vol. 15, No. 2, 1-17, 2006.

14. Sejdic, E., I. Djurovic, and J. Jiang, "Time-frequency feature representation using energy concentration: An overview of recent advances," Digit. Signal Process. A Rev. J., Vol. 19, No. 1, 153-183, 2009.
doi:10.1016/j.dsp.2007.12.004

15. Guo, Z., D. Li, and B. Zhang, "Survey of radar target recognition using one-dimensional high range resolution profiles," Systems Engineering and Electronics, Vol. 35, No. 1, 53-60, 2013.

16. LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner, "Gradient based learning applied to document recognition," Proc. IEEE, Vol. 86, No. 11, 2278-2324, 1998.
doi:10.1109/5.726791

17. LeCun, Y., Y. Bengio, and G. Hinton, "Deep learning," Nat. Methods, Vol. 521, 436-447, 2015.
doi:10.1038/nature14539

18. Lunden, J. and V. Koivunen, "Deep learning for HRRP-based target recognition in multistatic radar systems," IEEE Radar Conf., 2016.