1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, May 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, April 2001. Google Scholar
3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, October 2000. Google Scholar
4. Bakir, M., et al., "Tunable perfect metamaterial absorber and sensor applications," Journal of Materials Science: Materials in Electronics, Vol. 27, 12091-12099, 2016.
doi:10.1007/s10854-016-5359-7 Google Scholar
5. Dincer, F., et al., "Multi-band polarization independent cylindrical metamaterial absorber and sensor application," Modern Physics Letters B, Vol. 30, 1650095-9, 2016.
doi:10.1142/S0217984916500950 Google Scholar
6. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
doi:10.2528/PIER10122401 Google Scholar
7. Singh, P., S. Kabiri Ameri, L. Chao, M. N. Afsar, and S. Sonkusale, "Broadband millimeterwave metamaterial absorber based on embedding of dual resonators," Progress In Electromagnetics Research, Vol. 142, 625-638, 2013.
doi:10.2528/PIER13070209 Google Scholar
8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, June 2006.
doi:10.1126/science.1125907 Google Scholar
9. Unal, E., et al., "Tunable perfect metamaterial absorber design using the golden radio and energy harvesting and sensor applications," Journal of Materials Science: Materials in Electronics, 10.1007/s 10854-015-3642-7. Google Scholar
10. Dincer, F., O. Akgol, M. Karaaslan, E. Unal, and C. Sabah, "Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime," Progress In Electromagnetics Research, Vol. 144, 93-101, 2014.
doi:10.2528/PIER13111404 Google Scholar
11. Chambers, B. and A. Tennant, "Optimized design of Jaumann radar absorbing materials using a genetic algorithm," IEE Proc. Radar Sonar and Navig., Vol. 143, No. 1, February 1996.
doi:10.1049/ip-rsn:19960316 Google Scholar
12. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, May 2010.
doi:10.1109/TAP.2010.2044329 Google Scholar
13. Noor, A. and Z. Hu, "Metamaterial dual-polarized resistive Hilbert curve array radar absorber," IET Microw. Antennas Propag., Vol. 4, No. 6, 667-673, 2010.
doi:10.1049/iet-map.2009.0047 Google Scholar
14. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, Vol. 100, 103506, 2012.
doi:10.1063/1.3692178 Google Scholar
15. Shen, Y., Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, "An extremely wideband and lightweight metamaterial absorber," Journal of Applied Physics, Vol. 117, 224503, 2015.
doi:10.1063/1.4922421 Google Scholar
16. Li, S.-J., X.-Y. Cao, J. Gao, T. Liu, Y.-J. Zheng, and Z. Zhang, "Analysis and design of threelayer perfect metamaterial-inspired absorber based on double split-serration-rings structure," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, November 2015. Google Scholar
17. Sen, G., A. Banerjee, Sk. Nurul Islam, and S. Das, "Ultra-thin miniaturized metamaterial perfect absorber for X-band application," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2367-2370, October 2016.
doi:10.1002/mop.30048 Google Scholar
18. Qiu, K. and S. Feng, "A novel metamaterial absorber with perfect wave absorption obtained by layout design," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 4, 523-535, 2016.
doi:10.1080/09205071.2015.1134358 Google Scholar
19. Szabo, Z., G. H. Park, R. Hedge, and E. P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 10, 2646-2653, October 2010.
doi:10.1109/TMTT.2010.2065310 Google Scholar
20. Bayatpur, F. and K. Sarabandi, "Tuning performance of metamaterial-based frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, February 2009.
doi:10.1109/TAP.2008.2011404 Google Scholar