Vol. 73
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-04-10
Efficient Dual-Band Asymmetric Transmission of Linearly Polarized Wave Using a Chiral Metamaterial
By
Progress In Electromagnetics Research C, Vol. 73, 55-64, 2017
Abstract
In this paper, a three-layered chiral metamaterial composed of three twisted split-ring resonators is proposed and investigated. The simulated and measured results show that the proposed metamaterial can achieve efficient asymmetric transmission of linearly polarized wave and cross-polarization conversion for two distinct bands: X (6.95-10.05 GHz) and Ku (15.55-18.47 GHz). In the X-band, an incident y-polarized wave is almost converted to a x-polarized wave, while an incident x-polarized wave is completely blocked from passing through the structure. In the Ku-band, an incident x-polarized wave is almost converted to a y-polarized wave, while an incident y-polarized wave is blocked from passing through the structure. Moreover, the simulated and measured results confirm that the proposed metamaterial has a good robustness to misalignment, which provides convenience for fabricating in practical applications. Finally, the physical mechanism of this dual-band asymmetric transmission effect can be explained based on the different resonant modes of the proposed structure.
Citation
Yajun Liu, Song Xia, Hongyu Shi, Anxue Zhang, and Zhuo Xu, "Efficient Dual-Band Asymmetric Transmission of Linearly Polarized Wave Using a Chiral Metamaterial," Progress In Electromagnetics Research C, Vol. 73, 55-64, 2017.
doi:10.2528/PIERC17011602
References

1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847        Google Scholar

2. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907        Google Scholar

3. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.
doi:10.1126/science.1108759        Google Scholar

4. Ye, Y. and S. He, "90 polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, No. 20, 788, 2010.
doi:10.1063/1.3429683        Google Scholar

5. Chen, J. and A. Zhang, "A linear-to-circular polarizer using split ring resonators," Applied Computational Electromagnetics Society Journal, Vol. 28, No. 6, 507-512, 2013.        Google Scholar

6. Cheng, Y., Y. Nie, Z. Cheng, and R. Z. Gong, "Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial," Progress In Electromagnetics Research, Vol. 145, 263-272, 2014.
doi:10.2528/PIER14020501        Google Scholar

7. Fedotov, V. A., A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures," Nano Lett., Vol. 7, No. 7, 1996-1999, 2007.
doi:10.1021/nl0707961        Google Scholar

8. Singh, R., E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, "Terahertz metamaterial with asymmetric transmission," Phys. Rev. B, Vol. 80, No. 15, 153104(5), 2009.
doi:10.1103/PhysRevB.80.153104        Google Scholar

9. Schwanecke, A. S., V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, "Nanostructured metal film with asymmetric optical transmission," Nano Lett., Vol. 8, No. 9, 2940-2943, 2008.
doi:10.1021/nl801794d        Google Scholar

10. Plum, E., V. A. Fedotov, and N. I. Zheludev, "Planar metamaterial with transmission and reflection that depend on the direction of incidence," Appl. Phys. Lett., Vol. 94, No. 13, 131901, 2009.
doi:10.1063/1.3109780        Google Scholar

11. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, No. 25, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902        Google Scholar

12. Kang, M., J. Chen, H. X. Cui, Y. Li, and H. T. Wang, "Asymmetric transmission for linearly polarized electromagnetic radiation," Opt. Express, Vol. 19, No. 9, 8347-8356, 2011.
doi:10.1364/OE.19.008347        Google Scholar

13. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, No. 21, 213905, 2012.
doi:10.1103/PhysRevLett.108.213905        Google Scholar

14. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, No. 19, 195131, 2012.
doi:10.1103/PhysRevB.85.195131        Google Scholar

15. Cheng, Y., Y. Nie, X. Wang, and R. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys. A, Vol. 111, No. 1, 209-215, 2013.
doi:10.1007/s00339-013-7546-1        Google Scholar

16. Shi, J. H., Z. Zhu, H. F. Ma, and W. X. Jiang, "Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial," Journal of Applied Physics, Vol. 112, No. 7, 073522, 2012.
doi:10.1063/1.4757961        Google Scholar

17. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.
doi:10.2528/PIER13050601        Google Scholar

18. Shi, J., X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, "Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 102, No. 19, 191905, 2013.
doi:10.1063/1.4805075        Google Scholar

19. Shi, J. H., H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, "Broadband chirality and asymmetric transmission in ultrathin 90◦-twisted Babinet-inverted metasurfaces," Phys. Rev. B, Vol. 89, No. 16, 165128, 2014.
doi:10.1103/PhysRevB.89.165128        Google Scholar

20. Pfeiffer, C., C. Zhang, V. Ray, L. J. Guo, and A. Grbic, "High performance bianisotropic metasurfaces: Asymmetric transmission of light," Phys. Rev. Lett., Vol. 113, No. 2, 023902, 2014.
doi:10.1103/PhysRevLett.113.023902        Google Scholar

21. Liu, D. Y., M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, "Enhanced asymmetric transmission due to Fabry-Perot-like cavity," Opt. Express, Vol. 22, No. 10, 11707-11712, 2014.
doi:10.1364/OE.22.011707        Google Scholar

22. Song, K., Y. H. Liu, C. R. Luo, and X. P. Zhao, "High-efficiency broadband and multiband crosspolarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, No. 50, 505104, 2014.
doi:10.1088/0022-3727/47/50/505104        Google Scholar

23. Liu, D. J., Z. Y. Xiao, and Z. H. Wang, "Multi-band asymmetric transmission and 90◦ polarization rotator based on bi-Layered metasurface with F-shaped structure," Plasmonics, 2016, DOI: 10.1007/s11468-016-0284-4.        Google Scholar

24. Menzel, C., C. Rockstuhl, and F. Lederer, "An advanced Jones calculus for the classification of periodic metamaterials," Phys. Rev. A, Vol. 82, No. 5, 053811, 2010.
doi:10.1103/PhysRevA.82.053811        Google Scholar

25. Mutlu, M. and E. Ozbay, "A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling," Appl. Phys. Lett., Vol. 100, No. 5, 051909, 2012.
doi:10.1063/1.3682591        Google Scholar

26. Born, M., E. Wolf, and A. B. Bhatia, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Cambridge University, 1999.
doi:10.1017/CBO9781139644181

27. Ji, R., S. W. Wang, X. Liu, and W. Lu, "Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities," Nanoscale, Vol. 8, No. 15, 8189-8194, 2016.
doi:10.1039/C6NR00058D        Google Scholar