Vol. 74
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-05-22
Wideband RCS Reduction of Vivaldi Antenna Based on Substrate Integrated Waveguide
By
Progress In Electromagnetics Research C, Vol. 74, 101-109, 2017
Abstract
A novel design for radar cross section (RCS) reduction of a bilateral Vivaldi antenna is presented. The method for RCS reduction is based on the wave-guiding characteristic of the substrate integrated waveguide (SIW) structure, which guides the incident energy to the lateral side of antenna plane. The bistatic RCS is controlled under the premise of reducing the monostatic RCS. Compared with the reference antenna, a significant monostatic RCS reduction is achieved over a wide frequency band ranging from 5 GHz to 12 GHz, and a remarkable monostatic RCS reduction at 7 GHz is as much as 34.73 dB without obvious radiation performance degradation. To verify the proposed strategy, prototypes of the reference and proposed antennas have been fabricated and measured. Good agreements between the simulated and measured results demonstrate that the proposed method preserves the radiation performances well and achieves an outstanding wideband RCS reduction.
Citation
Jingjing Xue, Wen Jiang, Shu-Xi Gong, and Shenghui Zhang, "Wideband RCS Reduction of Vivaldi Antenna Based on Substrate Integrated Waveguide," Progress In Electromagnetics Research C, Vol. 74, 101-109, 2017.
doi:10.2528/PIERC17021202
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, IET Digital Library, 2004.        Google Scholar

2. Chen, T., W. X. Li, Z. H. Yao, X.-X. He, and X. Wang, "A novel stealth Vivaldi antenna," Proceedings of International Conference on Microwave and Millimeter Wave Technology, 1-4, May 2012.        Google Scholar

3. Dikmen, C. M., S. Cimen, and G. Cakir, "Planar octagonal-shaped UWB antenna with reduced radar cross section," IEEE Trans. Antennas and Propag., Vol. 62, No. 6, 2946-2953, Jun. 2014.
doi:10.1109/TAP.2014.2313855        Google Scholar

4. Wang, F. W., W. Jiang, T. Hong, H. Xue, S.-X. Gong, and Y.-Q. Zhang, "Radar cross section reduction of wideband antenna with a novel wideband radar absorbing materials," IET Microw. Antennas and Propag., Vol. 8, No. 7, 491-497, May 2014.
doi:10.1049/iet-map.2013.0356        Google Scholar

5. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
doi:10.2528/PIER12012904        Google Scholar

6. Turpin, J. P., P. E. Sieber, and D. H.Werner, "Absorbing ground planes for reducing planar antenna radar cross-section based on frequency selective surfaces," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1456-1459, 2013.
doi:10.1109/LAWP.2013.2288682        Google Scholar

7. Xu, S. and Y.-M. Xu, "Research on active cancelation stealth technique," Optik-International Journal for Light and Electron Optics, Vol. 125, No. 20, 6219-6222, Oct. 2014.
doi:10.1016/j.ijleo.2014.06.144        Google Scholar

8. Singh, H. and R. M. Jha, "Active radar cross section reduction: Theory and applications," Teaching Sociology, Vol. 39, No. 3, 274-289, Mar. 2015.        Google Scholar

9. Xiang, Y. C., C. W. Qu, F. Su, and M.-J. Yang, "Active cancellation stealth analysis of warship for LFM radar," Proceedings of the 10th International Conference on Signal Processing, 2109-2112, Oct. 2010.        Google Scholar

10. Liu, Y., K. Li, Y. T. Jia, Y.-W. Hao, S.-X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans. Antennas and Propag., Vol. 64, No. 1, 326-331, Jan. 2016.
doi:10.1109/TAP.2015.2497352        Google Scholar

11. Jia, Y. T., Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, "Broadband polarization rotation reflective surfaces and their application on RCS reduction," IEEE Trans. Antennas and Propag., Vol. 64, No. 1, 179-188, Jan. 2016.
doi:10.1109/TAP.2015.2502981        Google Scholar

12. Gibson, P. J., "The Vivaldi aerial," Proceedings of the 9th European Microwave Conference, 101-105, Sept. 1979.        Google Scholar

13. Schaubert, D. H., S. Kasturi, and A. O. Boryssenko, "Vivaldi antenna arrays for wide bandwidth and electronic scanning," Proceedings of the 2nd European Conference on Antennas and propagation, 1-6, Nov. 2007.        Google Scholar

14. Liu, J. F., S.-X. Gong, Y. X. Xu, and X.-L. Zhang, "Study of RCS on the dual-index Vivaldi antenna," Space Electronic Technology, 26-29, 2011.        Google Scholar

15. Zhang, G. Q., L.-M. Xu, and A.-X. Chen, "RCS reduction of Vivaldi antenna array using a PSS boundary," Proceedings of the 8th International Symposium on Antenna, Propagation and EM Theory, 345-347, Nov. 2008.        Google Scholar

16. Jiang, W., Y.-P. Li, S.-X. Gong, and W. Wang, "Novel UWB Vivaldi antenna with low RCS," Proceedings of Asia-Pacific Microwave Conference, 1405-1407, Nov. 2014.        Google Scholar

17. Luo, T. and Z. P. Nie, "RCS reduction of antipodal Vivaldi antenna," Proceedings of Asia-Pacific Microwave Conference, 1-3, Dec. 2015.        Google Scholar

18. Jia, Y. T., Y. Liu, Y.-W. Hao, and S.-X. Gong, "Vivaldi antenna with reduced RCS using half-mode substrate integrated waveguide," IET Electron. Lett., Vol. 50, No. 5, 345-346, Feb. 2014.
doi:10.1049/el.2013.3866        Google Scholar

19. Jiang, W., J. J. Xue, and L. Yang, "Novel design for RCS reduction of Vivaldi antenna," Proceeding of the 4th Asia-Pacific Conference on Antennas and Propagation, 608-609, Jun. 2015.        Google Scholar

20. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wirel. Compon. Lett., Vol. 11, No. 2, 68-70, Feb. 2001.
doi:10.1109/7260.914305        Google Scholar

21. Hong, W., B. Liu, Y. Q. Wang, Q.-H. Lai, H.-J. Tang, X.-X. Yin, Y.-D. Dong, Y. Zhang, and K. Wu, "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," Proceeding of the 31st International Conference on Infrared Millimeter Waves and the 14th International Conference on Terahertz, 219-219, Sept. 2006.        Google Scholar

22. Grigoropoulos, N., B. Sanz-Izquierdo, and P. R. Young, "Substrate integrated folded waveguides (SIFW) and filters," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 12, 829-831, Dec. 2005.
doi:10.1109/LMWC.2005.860027        Google Scholar

23. Coq, M. L., E. Rius, J. F. Favennec, C. Quendo, B. Potelon, L. Estagerie, P. Moroni, B. Bonnet, and A. E. Mostrah, "Miniaturized C-band SIW filters using high-permittivity ceramic substrates," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 5, No. 5, 620-626, May 2015.
doi:10.1109/TCPMT.2015.2422613        Google Scholar

24. Pourghorban Saghati, A., A. Pourghorban Saghati, and K. Entesari, "Ultra-miniature SIW cavity resonators and filters," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 12, 1-12, Dec. 2015.
doi:10.1109/TMTT.2015.2494023        Google Scholar

25. Tan, L. R., R. X. Wu, and P. Yin, "Magnetically reconfigurable SIW antenna with tunable frequencies and polarizations," EEE Trans. Antennas and Propag., Vol. 63, No. 6, 2772-2776, Jun. 2015.
doi:10.1109/TAP.2015.2414446        Google Scholar

26. Guan, D. F., C. Ding, Z.-P. Qian, Y.-S. Zhang, W.-Q. Cao, and E. Dutkiewicz, "An SIW based large-scale corporate-feed array antenna," IEEE Trans. Antennas and Propag., Vol. 63, No. 7, 2969-2976, Jul. 2015.
doi:10.1109/TAP.2015.2430369        Google Scholar

27. Li, G. L., K. J. Song, F. Zhang, and Y. Zhu, "Novel four-way multilayer SIW power divider with slot coupling structure," EEE Microw. Wirel. Compon. Lett., Vol. 25, No. 12, 799-801, Dec. 2015.
doi:10.1109/LMWC.2015.2496779        Google Scholar

28. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 66-73, Jan. 2005.
doi:10.1109/TMTT.2004.839303        Google Scholar