1. Ishizaka, Y., M. Nagai, T. Fujisawa, and K. Saitoh, "A photonic-plasmonic mode converter using mode-coupling-based polarization rotation for metal-inserted silicon platform," IEICE Electronics Express, Vol. 14, No. 2, 1-10, 2017.
doi:10.1587/elex.13.20160989 Google Scholar
2. Maier, S., Plasmonics: Fundamentals and Applications, 2007.
3. Namin, F. A., Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, "Efficient design, accurate fabrication and effective characterization of plasmonic quasi-crystalline arrays of nano-spherical particles," Sci. Rep., Vol. 6, 22009, 2016.
doi:10.1038/srep22009 Google Scholar
4. Polyakov, A., M. Zolotorev, P. J. Schuck, and H. A. Padmore, "Collective behavior of impedance matched plasmonic nanocavities," Opt. Express, Vol. 20, No. 7, 7685-7693, 2012.
doi:10.1364/OE.20.007685 Google Scholar
5. Guo, L. and Z. Sun, "Cooperative optical trapping in asymmetric plasmon nanocavity arrays," Opt. Express, Vol. 23, No. 24, 31324-31333, 2015.
doi:10.1364/OE.23.031324 Google Scholar
6. Martin-Cano, D., M. L. Nesterov, A. I. Fernandez-Do-minguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, "Domino plasmons for subwavelength terahertz circuitry," Opt. Express, Vol. 18, No. 1, 754-764, 2010.
doi:10.1364/OE.18.000754 Google Scholar
7. Janipour, M., M. Karami, R. Sofiani, and F. Kashani, "A novel adjustable plasmonic filter realization by split mode ring resonators," Journal of Electromagnetic Analysis and Applications, Vol. 5, No. 12, 405-414, 2013.
doi:10.4236/jemaa.2013.512063 Google Scholar
8. Noual, A., A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, "Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths," New Journal of Physics, Vol. 11, 103020, 2009.
doi:10.1088/1367-2630/11/10/103020 Google Scholar
9. Willingham, B. and S. Link, "Energy transport in metal nanoparticle chains via sub-radiant plasmon modes," Opt. Express, Vol. 19, 6450-6461, 2011.
doi:10.1364/OE.19.006450 Google Scholar
10. Boltasseva, A., T. Nikolajsen, K. Leosson, K. Kjær, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," Journal of Lightwave Technology, Vol. 23, No. 1, 413-422, 2005.
doi:10.1109/JLT.2004.835749 Google Scholar
11. Lin, X. S. and X. G Huang, "Tooth-shaped plasmonic waveguide filters with nanometric sizes," Optics Letters, Vol. 33, No. 23, 2874-2876, 2008.
doi:10.1364/OL.33.002874 Google Scholar
12. Luna, C., et al. "Tunable band-stop plasmonic filter based on symmetrical tooth-shaped waveguide couples," Modern Physics Letters B, Vol. 27, No. 14, 1350101, 2013.
doi:10.1142/S0217984913501017 Google Scholar
13. Xiang, Z., et al. "A subwavelength plasmonic waveguide filter with a ring resonator," Journal of Nanomaterials, Vol. 2013, 2013. Google Scholar
14. Amir, S., S. R. Mirnaziry, and M. S. Abrishamian, "Numerical investigation of tunable band-pass/band-stop plasmonic filters with hollow-core circular ring resonator," Journal of the Optical Society of Korea, Vol. 15, No. 1, 82-89, 2011.
doi:10.3807/JOSK.2011.15.1.082 Google Scholar
15. Amirreza, M., et al. "Plasmonic coaxial waveguide-cavity devices," Optics Express, Vol. 23, No. 16, 20549-20562, 2015.
doi:10.1364/OE.23.020549 Google Scholar
16. John, D., G. Steven, N. Joshua, and D. Robert, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, 2008.
17. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time-domain Method, Artech House, 2005.
18. El Mashade, M. B. and M. N. Abdel Aleem, "Analysis of ultra-short pulse propagation in nonlinear optical fiber," Progress In Electromagnetics Research B, Vol. 12, 219-241, 2009.
doi:10.2528/PIERB08121603 Google Scholar
19. Tian, J., R. Yang, and L. Song, "Optical properties of a Y-splitter based on hybrid multilayer plasmonic waveguide," IEEE Journal of Quantum Electronics, Vol. 50, No. 11, 898-903, 2014.
doi:10.1109/JQE.2014.2359232 Google Scholar
20. Dong, H. M., et al. "Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves," Optics Communications, Vol. 283, No. 9, 1784-1787, 2010.
doi:10.1016/j.optcom.2009.12.076 Google Scholar
21. Pannipitiya, A., et al. "Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure," Optics Express, Vol. 18, No. 6, 6191-6204, 2010.
doi:10.1364/OE.18.006191 Google Scholar
22. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, 2008.
23. Zhan, G., et al. "Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities," Optics Express, Vol. 22, No. 8, 9912-9919, 2014.
doi:10.1364/OE.22.009912 Google Scholar
24. Noual, A., et al. "Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths," New Journal of Physics, Vol. 11, No. 10, 103020, 2009.
doi:10.1088/1367-2630/11/10/103020 Google Scholar
25. Bozhevolnyi, S. I., "Plasmonic nano-guides and circuits," Frontiers in Optics, 2008. Google Scholar
26. Manolatou, C., M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonance channel add-drop filters," IEEE J. Quantum Electron., Vol. 35, 1322-1331, 1999.
doi:10.1109/3.784592 Google Scholar
27. Nady, M., "Modeling of ultra-short pulse propagation in nonlinear optical fibers,", master thesis, Al-AZHAR University, Faculty of Engineering, Dept. of Electronics and Electrical communications, 2009. Google Scholar
28. Li, Y. Q. and M. Xiao, "Observation of quantum interference between dressed states in an electromagnetically induced transparency," Physical Review A, Vol. 51, No. 6, 4959, 1995.
doi:10.1103/PhysRevA.51.4959 Google Scholar
29. Xing, Z., et al. "Plasmonically induced absorption and transparency based on stub waveguide with nanodisk and Fabry-Perot resonator," Plasmonics, 1-8, 2016. Google Scholar
30. Wang, J., et al. "A novel planar metamaterial design for electromagnetically induced transparency and slow light," Optics Express, Vol. 21, No. 21, 25159-25166, 2013.
doi:10.1364/OE.21.025159 Google Scholar
31. Politano, A., et al. "When plasmonics meets membrane technology," Journal of Physics: Condensed Matter, Vol. 28, No. 36, 363003, 2016.
doi:10.1088/0953-8984/28/36/363003 Google Scholar