Vol. 55
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-09
Mode Splitting Based on the Coupling Between Modes of Two Nanodisks Cavities and a Plasmonic Waveguide
By
Progress In Electromagnetics Research M, Vol. 55, 179-188, 2017
Abstract
A metal-insulator-metal (MIM) plasmonic waveguide coupled with two nanodisks as a resonator has been examined and numerically simulated with the finite-difference-time-domain (FDTD) and analytically by the Temporal Coupling Mode Theory (CMT). Based on the three-level system, the strong destructive interference between the two resonators leads to the distinct mode splitting response. The characteristics of mode splitting show that there is anomalous dispersion with the novel fast-light feature at the resonance. Meanwhile, the slow light characteristic can also be achieved in the system at wavelengths of the split modes. The relationship between the transmission characteristics and the geometric parameters is examined. The results show that the modulation depth of the mode splitting transmission spectrum of 80% with 0.175 ps fast-light effect of resonance can be achieved, while for the two modes these values are around 30% with -0.18 ps slow light-effect can be achieved. There is a good agreement between the FDTD simulated transmission features and CMT. The characteristics of the system indicate critical potential applications in integrated optical circuits such as slow-light and fast-light devices, optical monitoring, an optical filter, and optical storage.
Citation
Mohamed Nady Abdul Aleem, "Mode Splitting Based on the Coupling Between Modes of Two Nanodisks Cavities and a Plasmonic Waveguide," Progress In Electromagnetics Research M, Vol. 55, 179-188, 2017.
doi:10.2528/PIERM17021407
References

1. Ishizaka, Y., M. Nagai, T. Fujisawa, and K. Saitoh, "A photonic-plasmonic mode converter using mode-coupling-based polarization rotation for metal-inserted silicon platform," IEICE Electronics Express, Vol. 14, No. 2, 1-10, 2017.
doi:10.1587/elex.13.20160989

2. Maier, S., Plasmonics: Fundamentals and Applications, 2007.

3. Namin, F. A., Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, "Efficient design, accurate fabrication and effective characterization of plasmonic quasi-crystalline arrays of nano-spherical particles," Sci. Rep., Vol. 6, 22009, 2016.
doi:10.1038/srep22009

4. Polyakov, A., M. Zolotorev, P. J. Schuck, and H. A. Padmore, "Collective behavior of impedance matched plasmonic nanocavities," Opt. Express, Vol. 20, No. 7, 7685-7693, 2012.
doi:10.1364/OE.20.007685

5. Guo, L. and Z. Sun, "Cooperative optical trapping in asymmetric plasmon nanocavity arrays," Opt. Express, Vol. 23, No. 24, 31324-31333, 2015.
doi:10.1364/OE.23.031324

6. Martin-Cano, D., M. L. Nesterov, A. I. Fernandez-Do-minguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, "Domino plasmons for subwavelength terahertz circuitry," Opt. Express, Vol. 18, No. 1, 754-764, 2010.
doi:10.1364/OE.18.000754

7. Janipour, M., M. Karami, R. Sofiani, and F. Kashani, "A novel adjustable plasmonic filter realization by split mode ring resonators," Journal of Electromagnetic Analysis and Applications, Vol. 5, No. 12, 405-414, 2013.
doi:10.4236/jemaa.2013.512063

8. Noual, A., A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, "Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths," New Journal of Physics, Vol. 11, 103020, 2009.
doi:10.1088/1367-2630/11/10/103020

9. Willingham, B. and S. Link, "Energy transport in metal nanoparticle chains via sub-radiant plasmon modes," Opt. Express, Vol. 19, 6450-6461, 2011.
doi:10.1364/OE.19.006450

10. Boltasseva, A., T. Nikolajsen, K. Leosson, K. Kjær, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," Journal of Lightwave Technology, Vol. 23, No. 1, 413-422, 2005.
doi:10.1109/JLT.2004.835749

11. Lin, X. S. and X. G Huang, "Tooth-shaped plasmonic waveguide filters with nanometric sizes," Optics Letters, Vol. 33, No. 23, 2874-2876, 2008.
doi:10.1364/OL.33.002874

12. Luna, C., et al. "Tunable band-stop plasmonic filter based on symmetrical tooth-shaped waveguide couples," Modern Physics Letters B, Vol. 27, No. 14, 1350101, 2013.
doi:10.1142/S0217984913501017

13. Xiang, Z., et al. "A subwavelength plasmonic waveguide filter with a ring resonator," Journal of Nanomaterials, Vol. 2013, 2013.

14. Amir, S., S. R. Mirnaziry, and M. S. Abrishamian, "Numerical investigation of tunable band-pass/band-stop plasmonic filters with hollow-core circular ring resonator," Journal of the Optical Society of Korea, Vol. 15, No. 1, 82-89, 2011.
doi:10.3807/JOSK.2011.15.1.082

15. Amirreza, M., et al. "Plasmonic coaxial waveguide-cavity devices," Optics Express, Vol. 23, No. 16, 20549-20562, 2015.
doi:10.1364/OE.23.020549

16. John, D., G. Steven, N. Joshua, and D. Robert, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, 2008.

17. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time-domain Method, Artech House, Boston, 2005.

18. El Mashade, M. B. and M. N. Abdel Aleem, "Analysis of ultra-short pulse propagation in nonlinear optical fiber," Progress In Electromagnetics Research B, Vol. 12, 219-241, 2009.
doi:10.2528/PIERB08121603

19. Tian, J., R. Yang, and L. Song, "Optical properties of a Y-splitter based on hybrid multilayer plasmonic waveguide," IEEE Journal of Quantum Electronics, Vol. 50, No. 11, 898-903, 2014.
doi:10.1109/JQE.2014.2359232

20. Dong, H. M., et al. "Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves," Optics Communications, Vol. 283, No. 9, 1784-1787, 2010.
doi:10.1016/j.optcom.2009.12.076

21. Pannipitiya, A., et al. "Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure," Optics Express, Vol. 18, No. 6, 6191-6204, 2010.
doi:10.1364/OE.18.006191

22. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, Princeton, 2008.

23. Zhan, G., et al. "Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities," Optics Express, Vol. 22, No. 8, 9912-9919, 2014.
doi:10.1364/OE.22.009912

24. Noual, A., et al. "Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths," New Journal of Physics, Vol. 11, No. 10, 103020, 2009.
doi:10.1088/1367-2630/11/10/103020

25. Bozhevolnyi, S. I., "Plasmonic nano-guides and circuits," Frontiers in Optics, 2008.

26. Manolatou, C., M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonance channel add-drop filters," IEEE J. Quantum Electron., Vol. 35, 1322-1331, 1999.
doi:10.1109/3.784592

27. Nady, M., "Modeling of ultra-short pulse propagation in nonlinear optical fibers,", master thesis, Al-AZHAR University, Faculty of Engineering, Dept. of Electronics and Electrical communications, 2009.

28. Li, Y. Q. and M. Xiao, "Observation of quantum interference between dressed states in an electromagnetically induced transparency," Physical Review A, Vol. 51, No. 6, 4959, 1995.
doi:10.1103/PhysRevA.51.4959

29. Xing, Z., et al. "Plasmonically induced absorption and transparency based on stub waveguide with nanodisk and Fabry-Perot resonator," Plasmonics, 1-8, 2016.

30. Wang, J., et al. "A novel planar metamaterial design for electromagnetically induced transparency and slow light," Optics Express, Vol. 21, No. 21, 25159-25166, 2013.
doi:10.1364/OE.21.025159

31. Politano, A., et al. "When plasmonics meets membrane technology," Journal of Physics: Condensed Matter, Vol. 28, No. 36, 363003, 2016.
doi:10.1088/0953-8984/28/36/363003