Vol. 56
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-23
Rough Surface Scattering via Two-Way Parabolic Integral Equation
By
Progress In Electromagnetics Research M, Vol. 56, 81-90, 2017
Abstract
This paper extends the parabolic integral equation method, which is very effective for forward scattering from one-dimensional rough surfaces, to include backscatter. This is done by applying left-right splitting to a modi ed two-way governing integral operator, to express the solution as a series of Volterra operators; this series describes successively higher-order surface interactions between forward and backward going components, and allows highly efficient numerical evaluation. This and equivalent methods such as ordered multiple interactions have been developed for the full Helmholtz integral equations, but not previously applied to the parabolic Green's function. Equations are derived for both Dirichlet and Neumann boundary conditions (TE and TM).
Citation
Mark Spivack, and Orsola Rath Spivack, "Rough Surface Scattering via Two-Way Parabolic Integral Equation," Progress In Electromagnetics Research M, Vol. 56, 81-90, 2017.
doi:10.2528/PIERM17021801
References

1. Warnick, K. F. and W. C. Chew, "Numerical methods for rough surface scattering," Waves in Random Media, Vol. 11, R1-R30, 2001.
doi:10.1088/0959-7174/11/1/201        Google Scholar

2. Zhang, B. and S. N. Chandler-Wilde, "Integral equation methods for scattering by infinite rough surfaces," Math. Meth. in Appl. Sci., Vol. 26, 463-488, 2003.
doi:10.1002/mma.361        Google Scholar

3. Ogilvy, J. A., The Theory of Wave Scattering from Random Rough Surfaces, IOP Publishing, 1991.

4. De Santo, J. A. and G. S. Brown, "Analytical techniques for multiple scattering," Progress in Optics, Vol. 23, ed. E. Wolf, Elsevier, New York, 1986.        Google Scholar

5. Voronovitch, A. G., Wave Scattering from Rough Surfaces, 2nd Ed., Springer Science and Business Media, 2013.

6. Saillard, M. and A. Sentenac, "Rigorous solutions for electromagnetic scattering from rough surfaces," Waves in Random Media, Vol. 11, R103-R137, 2001.
doi:10.1088/0959-7174/11/3/201        Google Scholar

7. Simonsen, I., A. A. Maradudin, and T. A. Leskova, "Scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: The full angular intensity distribution," Physical Review A, Vol. 81, 1-13, 013806, 2010.        Google Scholar

8. Chan, H. C., "Radar sea clutter at low grazing angles," IEE Proc. Radar Signal Processing, 102-112, F 137, 1990.        Google Scholar

9. Watson, J. G. and J. B. Keller, "Rough surface scattering via the smoothing method," J. Acoust. Soc. Am., Vol. 75, 1705-1708, 1984.
doi:10.1121/1.390972        Google Scholar

10. Bruce, N. C., V. Ruizcortes, and J. C. Dainty, "Calculations of grazing incidence scattering from rough surfaces using the Kirchhoff approximation," Opt. Comm., Vol. 106, 123-126, 1994.
doi:10.1016/0030-4018(94)90307-7        Google Scholar

11. Sum, K. S. and J. Pan, "Scattering of longitudinal waves, (sound) by defects in fluids. Rough surface," J. Acoust. Soc. Am., Vol. 122, 333-344, 2007.
doi:10.1121/1.2713710        Google Scholar

12. Qi, C., Z. Zhao, W. Yang, Z. P. Nie, and G. Chen, "Electromagnetic scattering and Doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401        Google Scholar

13. Janaswamy, R., "Direct solution of current density induced on a rough surface by forward propagating waves," IEEE Transactions on Antennas and Propagation, Vol. 61, 3728-3738, 2013.
doi:10.1109/TAP.2013.2254692        Google Scholar

14. Thorsos, E., "Rough surface scattering using the parabolic wave equation," J. Acoust. Soc. Am., Vol. 82, S103, Suppl. 1, 1987.
doi:10.1121/1.2024537        Google Scholar

15. Spivack, M., "A numerical approach to rough surface scattering by the parabolic equation method," J. Acoust. Soc. Am., Vol. 87, 1999-2004, 1990.
doi:10.1121/1.399327        Google Scholar

16. Tappert, F. and L. Nghiem-Phu, "A new split-step Fourier algorithm," J. Acoust. Soc. Am., Vol. 77, S101, Suppl. 1, 1987.
doi:10.1121/1.2022130        Google Scholar

17. Spivack, M. and B. J. Uscinski, "Numerical solution of scattering from a hard surface in a medium with a linear profile," J. Acoust. Soc. Am., Vol. 93, 249-254, 1993.
doi:10.1121/1.405659        Google Scholar

18. Spivack, M., "Coherent field and specular reflection at grazing incidence on a rough surface," J. Acoust. Soc. Am., Vol. 95, 694-700, 1994.
doi:10.1121/1.408429        Google Scholar

19. Spivack, M., "Moments and angular spectrum for rough surface scattering at grazing incidence," J. Acoust. Soc. Am., Vol. 97, 745-753, 1995.
doi:10.1121/1.412121        Google Scholar

20. Uscinski, B. J. and C. J. Stanek, "Acoustic scattering from a rough sea surface: the mean field by the integral equation method," Waves in Random Media, Vol. 12, 247-263, 2002.
doi:10.1088/0959-7174/12/2/306        Google Scholar

21. Bao, G. and L. Zhang, "Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data," Inverse Problems, Vol. 32, 1-16, 2016.        Google Scholar

22. "Reconstruction of a heterogeneous fractal surface profile from scattering measurements at low grazing incidence," Antennas and Propagation Society International Symposium, 2005 IEEE, Vol. 3, 445-448, 2005.        Google Scholar

23. Spivack, M., "Solution of the inverse scattering problem for grazing incidence upon a rough surface," J. Opt. Soc. A, Vol. 9, 1355, 1992.
doi:10.1364/JOSAA.9.001352        Google Scholar

24. Cai, Z., D. Chen, and S. Lu, "Reconstruction of a fractal rough surface," Physica D: Nonlinear Phenomena, Vol. 213, 25-30, 2006.
doi:10.1016/j.physd.2005.10.011        Google Scholar

25. Akduman, I., R. Kress, and A. Yapar, "Iterative reconstruction of dielectric rough surface profiles at fixed frequency," Inverse Problems, Vol. 22, 939, 2006.
doi:10.1088/0266-5611/22/3/013        Google Scholar

26. Kapp, D. A. and G. S. Brown, "A new numerical method for rough surface scattering calculations," IEEE Trans. Ant. Prop., Vol. 44, 711-721, 1996.
doi:10.1109/8.496258        Google Scholar

27. Zhang, X., Z. Wu, T. Wu, and Y. Wei, "A study of electromagnetic scattering from sea surface with breaking waves using generalized forward-backward method," Ant. Prop. and EM Theory, ISAPE), 2016 11th International Symposium, IEEE, 472-474, 2016.        Google Scholar

28. Spivack, M., "Forward and inverse scattering from rough surfaces at low grazing incidence," J. Acoust. Soc. Am., Vol. 95, Pt 2, 3019, 1994.        Google Scholar

29. Spivack, M., A. Keen, J. Ogilvy, and C. Sillence, "Validation of left-right method for scattering by a rough surface," J. Modern Optics, Vol. 48, 1021-1033, 2001.        Google Scholar

30. Tran, P., "Calculation of the scattering of electromagnetic waves from a two-dimensional perfectly conducting surface using the method of ordered multiple interaction," Waves in Random Media, Vol. 7, 295-302, 1997.        Google Scholar

31. Adams, R. J., "Combined field integral equation formulations for electromagnetic scattering from convex geometries," IEEE Trans. Ant. Prop., Vol. 52, 1294-1303, 2004.
doi:10.1109/TAP.2004.827246        Google Scholar

32. Spivack, M., J. Ogilvy, and C. Sillence, "Electromagnetic scattering by large complex scatterers in 3D," IEE Proc Science, Measurement and Tech., Vol. 151, 464-466, 2004.
doi:10.1049/ip-smt:20040945        Google Scholar

33. Pino, M. R., L. Landesa, J. L. Rodriguez, F. Obelleiro, and R. J. Burkholder, "The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Trans. Ant. Prop., Vol. 47, 961-969, 1999.
doi:10.1109/8.777118        Google Scholar