1. Demosthenous, P., C. Pitris, and J. Georgiou, "Infrared fluorescence-based cancer screening sapsule for the small intestine," IEEE Transactions on Biomedical Circuits and Systems, Vol. 10, 467-475, 2016.
doi:10.1109/TBCAS.2015.2449277 Google Scholar
2. Lee, C., H. Choi, G. Go, S. Jeong, S. Y. Ko, J.-O. Park, et al. "Active locomotive intestinal capsule endoscope (ALICE) system: A prospective feasibility study," IEEE/ASME Transactions on Mechatronics, Vol. 20, 2067-2074, 2015.
doi:10.1109/TMECH.2014.2362117 Google Scholar
3. Luo, Y. H.-L. and L. da Cruz, "The Argus® II retinal prosthesis system," Progress in Retinal and Eye Research, Vol. 50, 89-107, 2015.
doi:10.1016/j.preteyeres.2015.09.003 Google Scholar
4. Bradshaw, P. J., P. Stobie, M. W. Knuiman, T. G. Briffaa, and M. S. Hobbs, "Life expectancy after implantation of a first cardiac permanent pacemaker (1995-2008): A population-based study," International Journal of Cardiology, Vol. 190, 42-46, 2015.
doi:10.1016/j.ijcard.2015.04.099 Google Scholar
5. Sun, T. J., X. Xie, G. L. Li, Y. K. Gu, Y. D. Deng, and Z. H. Wang, "Integrated omnidirectional wireless power receiving circuit for wireless endoscopy," Electronics Letters, Vol. 48, 907-908, 2012.
doi:10.1049/el.2012.1687 Google Scholar
6. Yang, Y., X. Li, and Y. Gao, , inventor, Xi'an Hongli patent office, assigned, Implantable visual prosthesis nerve stimulator, China patent CN201210402679.8, Oct. 22, 2012. Google Scholar
7. Bahrami, H., S. Abdollah Mirbozorgi, L. A. Rusch, and B. Gosselin, "Biological channel modelling and implantable UWB antenna design for neural recording systems," IEEE Transactions on Biological Engineering, Vol. 62, 88-98, 2015.
doi:10.1109/TBME.2014.2339836 Google Scholar
8. Li, X., C.-Y. Tsui, and W.-H. Ki, "A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices," IEEE Journal of Solid-State Circuits, Vol. 50, 978-989, 2015.
doi:10.1109/JSSC.2014.2387832 Google Scholar
9. Ba, A., M. Vidojkovic, K. Kanda, N. F. Kiyani, M. Lont, X. Huang, et al. "A 0.33 nJ/bit IEEE802.15.6/proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications," IEEE Journal of Biomedical and Health Informatics, Vol. 19, 920-929, 2015.
doi:10.1109/JBHI.2015.2414298 Google Scholar
10. Cruz, H., H.-Y. Huang, S.-Y. Lee, and C.-H. Luo, "A 1.3 mW low-IF, current-reuse, and current-bleeding RF front-end for the MICS band with sensitivity of -97 dBm," IEEE Transactions on Circuits and System, Vol. 62, 1627-1636, 2015.
doi:10.1109/TCSI.2015.2415179 Google Scholar
11. Alrawashdeh, R. S., Y. Huang, M. Kod, and A. A. B. Sajak, "A broadband flexible implantable loop antenna with complementary split ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1506-1509, 2015.
doi:10.1109/LAWP.2015.2403952 Google Scholar
12. Alisoy, H. Z., S. Barlaz Us, and B. B. Alagoz, "An FDTD based numerical analysis of microwave propagation properties in a skin-fat tissue layers," Optik, Vol. 124, 5218-5224, 2013.
doi:10.1016/j.ijleo.2013.03.085 Google Scholar
13. Ha, S.-G., J. Cho, J. Choi, H. Kim, and K.-Y. Jung, "FDTD dispersive modeling of human tissues based on quadratic complex rational function," IEEE Transactions on Antennas and Propagation, Vol. 61, 996-999, 2013.
doi:10.1109/TAP.2012.2223448 Google Scholar
14. Karwowski, A., "Improving accuracy of FDTD simulations in layered biological tissues," IEEE Microwave and Wireless Components Letters, Vol. 14, 151-152, 2004.
doi:10.1109/LMWC.2004.827103 Google Scholar
15. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine & Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
16. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company Inc, 1941.
17. Khaleghi, A., R. Chavez-Santiago, and I. Balasingham, "Ultrawideband pulse-based data communications for medical implants," IET Communications, Vol. 4, 1889-1897, 2010.
doi:10.1049/iet-com.2009.0692 Google Scholar
18. Chae, M. S., Z. Yang, M. R. Yuce, L. Hoang, and W. Liu, "A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter," IEEE Transactions on Neural System and Rehabilitation Engineering, Vol. 17, 312-321, 2009.
doi:10.1109/TNSRE.2009.2021607 Google Scholar
19. Li, X., Y. Yang, Y. Gao, and S. Qiao, "Visual prosthesis wireless power transfer system modeling based on biological capacitance and its efficiency-optimization," Acta Electronica Sinica, Vol. 43, 104-110, 2015. Google Scholar
20. Li, X., Y. Yang, and Y. Gao, "Visual prosthesis wireless energy transfer system optimal modelling," BioMedical Engineering Online, Vol. 13, 1-11, 2014. Google Scholar