Vol. 56
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-05-09
Simultaneous Energy and Data Wireless Transfer Attenuation in Biological Channel of Deep Implantable Medical Devices: Characteristic Analysis and Modeling
By
Progress In Electromagnetics Research M, Vol. 56, 169-177, 2017
Abstract
The scheme of energy and data wireless transmission with the same carrier based on M-ary Differentially-Encoded Amplitude and Phase Shift Keying (MDAPSK) technology is an effective method to implement energy supply and data communication for implantable medical devices. In this paper, based on a large number of finite-difference time-domain simulation analyses, combined with knowledge of the clinical demand for implantable medical devices, the 13.56-402 MHz band is selected as the biological channel frequency band, and attenuation characteristic analysis and mathematical modeling are carried out. Based on massive amounts of simulation data, the Levenberg-Marquardt and general global optimization methods are adopted to build a homogeneous and heterogeneous biological channel model in the aforementioned frequency band. In order to verify the reliability and versatility of the mathematical model, an adult male rabbit is employed for a living implantation experiment. Using a vector network analyzer, different frequency electromagnetic wave receiving efficiencies in different biological channels are measured. The measured data are highly consistent with the simulation data, which fully verifies the rationality of the proposed biological channel model. This work provides a theoretical basis and model reference for the clinical application of an implantable medical device wireless transmission system.
Citation
Xueping Li, Yuan Yang, Ningmei Yu, and Shijie Qiao, "Simultaneous Energy and Data Wireless Transfer Attenuation in Biological Channel of Deep Implantable Medical Devices: Characteristic Analysis and Modeling," Progress In Electromagnetics Research M, Vol. 56, 169-177, 2017.
doi:10.2528/PIERM17022102
References

1. Demosthenous, P., C. Pitris, and J. Georgiou, "Infrared fluorescence-based cancer screening sapsule for the small intestine," IEEE Transactions on Biomedical Circuits and Systems, Vol. 10, 467-475, 2016.
doi:10.1109/TBCAS.2015.2449277        Google Scholar

2. Lee, C., H. Choi, G. Go, S. Jeong, S. Y. Ko, J.-O. Park, et al. "Active locomotive intestinal capsule endoscope (ALICE) system: A prospective feasibility study," IEEE/ASME Transactions on Mechatronics, Vol. 20, 2067-2074, 2015.
doi:10.1109/TMECH.2014.2362117        Google Scholar

3. Luo, Y. H.-L. and L. da Cruz, "The Argus® II retinal prosthesis system," Progress in Retinal and Eye Research, Vol. 50, 89-107, 2015.
doi:10.1016/j.preteyeres.2015.09.003        Google Scholar

4. Bradshaw, P. J., P. Stobie, M. W. Knuiman, T. G. Briffaa, and M. S. Hobbs, "Life expectancy after implantation of a first cardiac permanent pacemaker (1995-2008): A population-based study," International Journal of Cardiology, Vol. 190, 42-46, 2015.
doi:10.1016/j.ijcard.2015.04.099        Google Scholar

5. Sun, T. J., X. Xie, G. L. Li, Y. K. Gu, Y. D. Deng, and Z. H. Wang, "Integrated omnidirectional wireless power receiving circuit for wireless endoscopy," Electronics Letters, Vol. 48, 907-908, 2012.
doi:10.1049/el.2012.1687        Google Scholar

6. Yang, Y., X. Li, and Y. Gao, , inventor, Xi'an Hongli patent office, assigned, Implantable visual prosthesis nerve stimulator, China patent CN201210402679.8, Oct. 22, 2012.        Google Scholar

7. Bahrami, H., S. Abdollah Mirbozorgi, L. A. Rusch, and B. Gosselin, "Biological channel modelling and implantable UWB antenna design for neural recording systems," IEEE Transactions on Biological Engineering, Vol. 62, 88-98, 2015.
doi:10.1109/TBME.2014.2339836        Google Scholar

8. Li, X., C.-Y. Tsui, and W.-H. Ki, "A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices," IEEE Journal of Solid-State Circuits, Vol. 50, 978-989, 2015.
doi:10.1109/JSSC.2014.2387832        Google Scholar

9. Ba, A., M. Vidojkovic, K. Kanda, N. F. Kiyani, M. Lont, X. Huang, et al. "A 0.33 nJ/bit IEEE802.15.6/proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications," IEEE Journal of Biomedical and Health Informatics, Vol. 19, 920-929, 2015.
doi:10.1109/JBHI.2015.2414298        Google Scholar

10. Cruz, H., H.-Y. Huang, S.-Y. Lee, and C.-H. Luo, "A 1.3 mW low-IF, current-reuse, and current-bleeding RF front-end for the MICS band with sensitivity of -97 dBm," IEEE Transactions on Circuits and System, Vol. 62, 1627-1636, 2015.
doi:10.1109/TCSI.2015.2415179        Google Scholar

11. Alrawashdeh, R. S., Y. Huang, M. Kod, and A. A. B. Sajak, "A broadband flexible implantable loop antenna with complementary split ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1506-1509, 2015.
doi:10.1109/LAWP.2015.2403952        Google Scholar

12. Alisoy, H. Z., S. Barlaz Us, and B. B. Alagoz, "An FDTD based numerical analysis of microwave propagation properties in a skin-fat tissue layers," Optik, Vol. 124, 5218-5224, 2013.
doi:10.1016/j.ijleo.2013.03.085        Google Scholar

13. Ha, S.-G., J. Cho, J. Choi, H. Kim, and K.-Y. Jung, "FDTD dispersive modeling of human tissues based on quadratic complex rational function," IEEE Transactions on Antennas and Propagation, Vol. 61, 996-999, 2013.
doi:10.1109/TAP.2012.2223448        Google Scholar

14. Karwowski, A., "Improving accuracy of FDTD simulations in layered biological tissues," IEEE Microwave and Wireless Components Letters, Vol. 14, 151-152, 2004.
doi:10.1109/LMWC.2004.827103        Google Scholar

15. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine & Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002        Google Scholar

16. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company Inc, 1941.

17. Khaleghi, A., R. Chavez-Santiago, and I. Balasingham, "Ultrawideband pulse-based data communications for medical implants," IET Communications, Vol. 4, 1889-1897, 2010.
doi:10.1049/iet-com.2009.0692        Google Scholar

18. Chae, M. S., Z. Yang, M. R. Yuce, L. Hoang, and W. Liu, "A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter," IEEE Transactions on Neural System and Rehabilitation Engineering, Vol. 17, 312-321, 2009.
doi:10.1109/TNSRE.2009.2021607        Google Scholar

19. Li, X., Y. Yang, Y. Gao, and S. Qiao, "Visual prosthesis wireless power transfer system modeling based on biological capacitance and its efficiency-optimization," Acta Electronica Sinica, Vol. 43, 104-110, 2015.        Google Scholar

20. Li, X., Y. Yang, and Y. Gao, "Visual prosthesis wireless energy transfer system optimal modelling," BioMedical Engineering Online, Vol. 13, 1-11, 2014.        Google Scholar