1. Hodgkin, A. L. and A. F. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerve," The Journal of Physiology, Vol. 117, No. 4, 500, 1952.
doi:10.1113/jphysiol.1952.sp004764 Google Scholar
2. Gabbiani, F. and S. J. Cox, Mathematics for Neuroscientists, Academic Press, 2010.
3. Koch, C., I. Segev, and eds., Methods in Neuronal Modeling: From Ions to Networks, MIT Press, 1998.
4. Roth, B. J. and P. J. Basser, "A model of the stimulation of a nerve fiber by electromagnetic induction," IEEE Transactions on Biomedical Engineering, Vol. 37, No. 6, 588-597, 1990.
doi:10.1109/10.55662 Google Scholar
5. Bernardi, P. and G. D’Inzeo, "A nonlinear analysis of the effects of transient electromagnetic fields on excitable membranes," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 7, 670-679, 1984.
doi:10.1109/TMTT.1984.1132752 Google Scholar
6. Goetz, S. M., C. N. Truong, M. G. Gerhofer, A. V. Peterchev, H.-G. Herzog, and T.Weyh, "Analysis and optimization of pulse dynamics for magnetic stimulation," PloS One, Vol. 8, No. 3, e55771, 2013.
doi:10.1371/journal.pone.0055771 Google Scholar
7. Holt, G. R., "A critical reexamination of some assumptions and implications of cable theory in neurobiology,", Ph.D. diss., California Institute of Technology, 1997. Google Scholar
8. Rattay, F., "Analysis of models for extracellular fiber stimulation," IEEE Transactions on Biomedical Engineering, Vol. 36, No. 7, 676-682, 1989.
doi:10.1109/10.32099 Google Scholar
9. Joucla, S. and B. Yvert, "Modeling extracellular electrical neural stimulation: From basic understanding to MEA-based applications," Journal of Physiology-Paris, Vol. 106, No. 3, 146-158, 2012.
doi:10.1016/j.jphysparis.2011.10.003 Google Scholar
10. Basser, P. J. and B. J. Roth, "Stimulation of a myelinated nerve axon by electromagnetic induction," Medical and Biological Engineering and Computing, Vol. 29, No. 3, 261-268, 1991.
doi:10.1007/BF02446708 Google Scholar
11. Hirata, A., J. Hattori, I. Laakso, A. Takagi, and T. Shimada, "Computation of induced electric field for the sacral nerve activation," Physics in Medicine and Biology, Vol. 58, No. 21, 7745, 2013.
doi:10.1088/0031-9155/58/21/7745 Google Scholar
12. Warman, E. N., W. M. Grill, and D. Durand, "Modeling the effects of electric fields on nerve fibers: Determination of excitation thresholds," IEEE Transactions on Biomedical Engineering, Vol. 39, No. 12, 1244-1254, 1992.
doi:10.1109/10.184700 Google Scholar
13. Pashut, T., S. Wolfus, A. Friedman, M. Lavidor, I. Bar-Gad, Y. Yeshurun, and A. Korngreen, "Mechanisms of magnetic stimulation of central nervous system neurons," PLoS Computational Biology, Vol. 7, No. 3, e1002022, 2011.
doi:10.1371/journal.pcbi.1002022 Google Scholar
14. King, R. W. P., "Nerves in a human body exposed to low-frequency electromagnetic fields," IEEE Transactions on Biomedical Engineering, Vol. 46, No. 12, 1426-1431, 1999.
doi:10.1109/10.804570 Google Scholar
15. Liston, A., R. Bayford, and D. Holder, "A cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: Implications for electrical impedance tomography of fast neural activity in the brain," Medical & Biological Engineering & Computing, Vol. 50, No. 5, 425-437, 2012.
doi:10.1007/s11517-012-0901-0 Google Scholar
16. Howell, B., L. E. Medina, and W. M. Grill, "Effects of frequency-dependent membrane capacitance on neural excitability," Journal of Neural Engineering, Vol. 12, No. 5, 056015, 2015.
doi:10.1088/1741-2560/12/5/056015 Google Scholar
17. Eleiwa, M. A. and A. Z. Elsherbeni, "Debye constants for biological tissues from 30 Hz to 20 GHz," ACES Journal, Vol. 16, No. 3, 2001. Google Scholar
18. Takashima, S. and H. P. Schwan, "Passive electrical properties of squid axon membrane," The Journal of Membrane Biology, Vol. 17, No. 1, 51-68, 1974.
doi:10.1007/BF01870172 Google Scholar
19. Cole, K. S., "Electrical properties of the squid axon sheath," Biophysical Journal, Vol. 16, No. 2, 137-142, 1976.
doi:10.1016/S0006-3495(76)85670-6 Google Scholar
20. Cole, K. S., "Rectification and inductance in the squid giant axon," The Journal of General Physiology, Vol. 25, No. 1, 29-51, 1941.
doi:10.1085/jgp.25.1.29 Google Scholar
21. Cole, K. S. and R. F. Baker, "Longitudinal impedance of the squid giant axon," The Journal of General Physiology, Vol. 24, No. 6, 771-788, 1941.
doi:10.1085/jgp.24.6.771 Google Scholar
22. Cole, K. S. and R. F. Baker, "Transverse impedance of the squid giant axon during current flow," The Journal of General Physiology, Vol. 24, No. 4, 535-549, 1941.
doi:10.1085/jgp.24.4.535 Google Scholar
23. Cole, K. S. and G. Marmont, "The effect of ionic environment upon the longitudinal impedance of the squid giant axon," Fed. Proc., Vol. 1, 15-16, 1942. Google Scholar
24. Cole, K. S., Membranes, Ions, and Impulses: A Chapter of Classical Biophysics, Vol. 5, Univ. of California Press, 1968.
25. Grant, P. F. and M. M. Lowery, "Effect of dispersive conductivity and permittivity in volume conductor models of deep brain stimulation," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 10, 2386-2393, 2010.
doi:10.1109/TBME.2010.2055054 Google Scholar
26. Nagarajan, S. S., D. M. Durand, and E. N. Warman, "Effects of induced electric fields on finite neuronal structures: A simulation study," IEEE Transactions on Biomedical Engineering, Vol. 40, No. 11, 1175-1188, 1993.
doi:10.1109/10.245636 Google Scholar
27. Miranda, P. C., L. Correia, R. Salvador, and P. J. Basser, "Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields," Physics in Medicine and Biology, Vol. 52, No. 18, 5603, 2007.
doi:10.1088/0031-9155/52/18/009 Google Scholar
28. Silva, S., P. J. Basser, and P. C. Miranda, "Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus," Clinical Neurophysiology, Vol. 119, No. 10, 2405-2413, 2008.
doi:10.1016/j.clinph.2008.07.248 Google Scholar
29. Platkiewicz, J. and R. Brette, "A threshold equation for action potential initiation," PLoS Computational Biology, Vol. 6, No. 7, 2010.
doi:10.1371/journal.pcbi.1000850 Google Scholar
30. Ying, W. and C. S. Henriquez, "Hybrid finite element method for describing the electrical response of biological cells to applied fields," IEEE Transactions on Biomedical Engineering, Vol. 54, No. 4, 611-620, 2007.
doi:10.1109/TBME.2006.889172 Google Scholar
31. McIntyre, C. C., et al. "Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle," Journal of Neurophysiology, Vol. 87, No. 2, 995-1006, 2002.
doi:10.1152/jn.00353.2001 Google Scholar
32. McIntyre, C. C. and W. M. Grill, "Extracellular stimulation of central neurons: Influence of stimulus waveform and frequency on neuronal output," Journal of Neurophysiology, Vol. 88, No. 4, 1592-1604, 2002.
doi:10.1152/jn.2002.88.4.1592 Google Scholar
33. Oughstun, K. E. and N. A. Cartwright, "On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion," Optics Express, Vol. 11, No. 13, 1541-1546, 2003.
doi:10.1364/OE.11.001541 Google Scholar
34. Kandel, E. R., J. H. Schwartz, T. M. Jessell, and (Eds.), Principles of Neural Science, Vol. 4, 71-171, McGraw-Hill, 2000.