1. Sander, M. S., M. J. Cote, W. Gu, B. M. Kile, and C. P. Tripp, "Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates," Adv. Mater., Vol. 16, No. 22, 2052-2057, Nov. 2004.
doi:10.1002/adma.200400446 Google Scholar
2. Graham, L. M., S. Cho, S. K. Kim, M. Noked, and S. B. Lee, "Role of boric acid in nickel nanotube electrodeposition: A surface-directed growth mechanism," Chem. Commun., Vol. 50, No. 5, 527-529, 2014.
doi:10.1039/C3CC47183G Google Scholar
3. Alnassar, M., A. Alfadhel, Y. P. Ivanov, and J. Kosel, "Magnetoelectric polymer nanocomposite for flexible electronics," J. Appl. Phys., Vol. 117, No. 17, 17D711, 2015.
doi:10.1063/1.4913943 Google Scholar
4. Yen, S. K., P. Padmanabhan, and S. T. Selvan, "Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery," Theranostics, Vol. 3, No. 12, 986-1003, 2013.
doi:10.7150/thno.4827 Google Scholar
5. Salem, A. K., P. C. Searson, and K. W. Leong, "Multifunctional nanorods for gene delivery," Nat. Mater., Vol. 2, No. 10, 668-671, 2003.
doi:10.1038/nmat974 Google Scholar
6. Rawtani, D., T. Sajan, A. T. R, and Y. K. Agrawal, "Emerging strategies for synthesis and manipulation of nanowires: A Review," Rev. Adv. Mater. Sci., Vol. 40, No. 2, 177-187, 2015. Google Scholar
7. Guo, P., C. R. Martin, Y. Zhao, J. Ge, and R. N. Zare, "General method for producing organic nanoparticles using nanoporous membranes," Nano Lett., Vol. 10, 2202-2206, 2010.
doi:10.1021/nl101057d Google Scholar
8. Martin, C. R., "Nanomaterials: A membrane-based synthetic approach," Science, Vol. 266, No. 5193, 1961-1966, 1994.
doi:10.1126/science.266.5193.1961 Google Scholar
9. Hulteen, J. C. and C. R. Martin, "A general template-based method for the preparation of nanomaterials," J. Mater. Chem., Vol. 7, No. 7, 1075-1087, 1997.
doi:10.1039/a700027h Google Scholar
10. Schonenberger, C., "Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology," J. Phys. Chem. B, Vol. 5647, No. 96, 5497-5505, 1997.
doi:10.1021/jp963938g Google Scholar
11. Ohgai, T., X. Hoffer, A. Fabian, L. Gravier, and J.-P. Ansermet, "Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminium," Journal of Materials Chemistry, Vol. 13, No. 10, 2530, 2003.
doi:10.1039/B306581B Google Scholar
12. Shao, P., G. Ji, and P. Chen, "Gold nanotube membranes: Preparation, characterization and application for enantioseparation," J. Memb. Sci., Vol. 255, No. 1-2, 1-11, Jun. 2005.
doi:10.1016/j.memsci.2005.01.018 Google Scholar
13. Xu, D., Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, "Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates," Chem. Phys. Lett., Vol. 325, No. 4, 340-344, Jul. 2000.
doi:10.1016/S0009-2614(00)00676-X Google Scholar
14. Katwal, G., M. Paulose, I. A. Rusakova, J. E. Martinez, and O. K. Varghese, "Rapid growth of zinc oxide nanotube–nanowire hybrid architectures and their use in breast cancer-related volatile organics detection," Nano Lett., Vol. 16, No. 5, 3014-3021, May 2016.
doi:10.1021/acs.nanolett.5b05280 Google Scholar
15. Wang, X. W., Z. H. Yuan, and B. C. Fang, "Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters," Mater. Chem. Phys., Vol. 125, No. 1–2, 1-4, 2011.
doi:10.1016/j.matchemphys.2010.08.083 Google Scholar
16. Toimil-Molares, M. E., "Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology," Beilstein J. Nanotechnol., Vol. 3, No. 1, 860-883, Dec. 2012.
doi:10.3762/bjnano.3.97 Google Scholar
17. Vivas, L. G., Y. P. Ivanov, D. G. Trabada, M. P. Proenca, O. Chubykalo-Fesenko, and M. Vazquez, "Magnetic properties of Co nanopillar arrays prepared from alumina templates,", Vol. 24, No. 10, 105703, 2013.
doi:10.1088/0957-4484/24/10/105703 Google Scholar
18. Dallanora, A., T. L. Marcondes, G. G. Bermudez, P. F. P. Fichtner, C. Trautmann, M. Toulemonde, and R. M. Papaleo, "Nanoporous SiO2/Si thin layers produced by ion track etching: Dependence on the ion energy and criterion for etchability," J. Appl. Phys., Vol. 104, No. 2, 24307–1-24307–8, 2008.
doi:10.1063/1.2957052 Google Scholar
19. Fink, D., Fundamentals of Ion-Irradiated Polymers: Fundamentals and Applications. V. 1, Springer, Berlin-Heidelberg, 2004.
doi:10.1007/978-3-662-07326-1
20. Shen, C., X. Wang, W. Zhang, and F. Kang, "Direct prototyping of patterned nanoporous carbon: A route from materials to on-chip devices," Sci. Rep., Vol. 3, 2294, 2013.
doi:10.1038/srep02294 Google Scholar
21. Kaniukov, E. Y., J. Ustarroz, D. V Yakimchuk, M. Petrova, H. Terryn, V. Sivakov, and A. V Petrov, "Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology," Nanotechnology, Vol. 27, No. 11, 115305, Mar. 2016.
doi:10.1088/0957-4484/27/11/115305 Google Scholar
22. Fink, D., A. V. Petrov, K. Hoppe, W. R. Fahrner, R. M. Papaleo, A. S. Berdinsky, A. Chandra, A. Chemseddine, A. Zrineh, A. Biswas, F. Faupel, and L. T. Chadderton, "Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures," Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, Vol. 218, No. 1-4, 355-361, 2004.
doi:10.1016/j.nimb.2003.12.083 Google Scholar
23. Haehnel, V., S. Fahler, P. Schaaf, M. Miglierini, C. Mickel, L. Schultz, and H. Schlorb, "Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes," Acta Mater., Vol. 58, No. 7, 2330-2337, 2010.
doi:10.1016/j.actamat.2009.12.019 Google Scholar
24. Martın, J. I., M. Velez, R. Morales, J. M. Alameda, J. V. Anguita, F. Briones, and J. L. Vicent, "Fabrication and magnetic properties of arrays of amorphous and polycrystalline ferromagnetic nanowires obtained by electron beam lithography," J. Magn. Magn. Mater., Vol. 249, No. 1–2, 156-162, Aug. 2002.
doi:10.1016/S0304-8853(02)00524-3 Google Scholar
25. Barth, S., S. Estrade, F. Hernandez-Ramirez, F. Peiro, J. Arbiol, A. Romano-Rodriguez, J. R. Morante, and S. Mathur, "Studies on surface facets and chemical composition of vapor grown one-dimensional magnetite nanostructures," Cryst. Growth Des., Vol. 9, No. 2, 1077-1081, Feb. 2009.
doi:10.1021/cg8009095 Google Scholar
26. Morber, J. R., Y. Ding, M. S. Haluska, Y. Li, J. P. Liu, Z. L.Wang, and R. L. Snyder, "PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties," J. Phys. Chem. B, Vol. 110, No. 43, 21672-21679, 2006.
doi:10.1021/jp064484i Google Scholar
27. Liu, Z., Q. Zhang, G. Shi, Y. Li, and H. Wang, "Solvothermal synthesis and magneto-optical properties of Zn1-xNixO hierarchical microspheres," J. Magn. Magn. Mater., Vol. 323, No. 7, 1022-1026, Apr. 2011.
doi:10.1016/j.jmmm.2010.12.011 Google Scholar
28. Hua, Z., S. Yang, H. Huang, L. Lv, M. Lu, B. Gu, and Y. Du, "Metal nanotubes prepared by a sol-gel method followed by a hydrogen reduction procedure," Nanotechnology, Vol. 17, No. 20, 5106-5110, 2006.
doi:10.1088/0957-4484/17/20/011 Google Scholar
29. Zhou, D., T. Wang, M. G. Zhu, Z. H. Guo, W. Li, and F. S. Li, "Magnetic interaction in FeCo alloy nanotube array," J. Magn., Vol. 16, No. 4, 413-416, 2011.
doi:10.4283/JMAG.2011.16.4.413 Google Scholar
30. Yoo, B., F. Xiao, K. N. Bozhilov, J. Herman, M. A. Ryan, and N. V. Myung, "Electrodeposition of thermoelectric superlattice nanowires," Adv. Mater., Vol. 19, No. 2, 296-299, 2007.
doi:10.1002/adma.200600606 Google Scholar
31. Motoyama, M., Y. Fukunaka, T. Sakka, and Y. H. Ogata, "Initial stages of electrodeposition of metal nanowires in nanoporous templates," Electrochim. Acta, Vol. 53, No. 1, 205-212, Nov. 2007.
doi:10.1016/j.electacta.2007.04.122 Google Scholar
32. Narayanan, T. N., M. M. Shaijumon, L. Ci, P. M. Ajayan, and M. R. Anantharaman, "On the growth mechanism of nickel and cobalt nanowires and comparison of their magnetic properties," Nano Res., Vol. 1, No. 6, 465-473, Dec. 2008.
doi:10.1007/s12274-008-8049-9 Google Scholar
33. Proenca, M. P., C. T. Sousa, J. Ventura, M. Vazquez, and J. P. Araujo, "Distinguishing nanowire and nanotube formation by the deposition current transients," Nanoscale Res. Lett., Vol. 7, No. 1, 280, 2012.
doi:10.1186/1556-276X-7-280 Google Scholar
34. Han, X.-F., S. Shamaila, R. Sharif, J.-Y. Chen, H.-R. Liu, and D.-P. Liu, "Structural and magnetic properties of various ferromagnetic nanotubes," Adv. Mater., Vol. 21, No. 45, 4619-4624, Dec. 2009.
doi:10.1002/adma.200901065 Google Scholar
35. Narayanan, T. N., M. M. Shaijumon, P. M. Ajayan, and M. R. Anantharaman, "Synthesis of high coercivity cobalt nanotubes with acetate precursors and elucidation of the mechanism of growth," J. Phys. Chem. C, Vol. 112, No. 37, 14281-14285, Sep. 2008.
doi:10.1021/jp8035007 Google Scholar
36. Guillen, C. and J. Herrero, "Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates," Thin Solid Films, Vol. 480–481, 129-132, Jun. 2005.
doi:10.1016/j.tsf.2004.11.040 Google Scholar
37. Faraj, M. G. and K. Ibrahim, "Optical and structural properties of thermally evaporated zinc oxide thin films on polyethylene terephthalate substrates," Int. J. Polym. Sci., Vol. 2011, 1-4, 2011.
doi:10.1155/2011/302843 Google Scholar
38. Langford, J. I. and A. J. C. Wilson, "Scherrer after sixty years: A survey and some new results in the determination of crystallite size," J. Appl. Crystallogr., Vol. 11, No. 2, 102-113, Apr. 1978.
doi:10.1107/S0021889878012844 Google Scholar
39. Han, G. C., B. Y. Zong, P. Luo, and Y. H. Wu, "Angular dependence of the coercivity and remanence of ferromagnetic nanowire arrays," J. Appl. Phys., Vol. 93, No. 11, 9202-9207, 2003.
doi:10.1063/1.1572197 Google Scholar