Vol. 75
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-06-20
Radiation Forces on a Cluster of Spherical Nanoparticles in Visible Light Spectrum
By
Progress In Electromagnetics Research C, Vol. 75, 99-109, 2017
Abstract
The scattering of the electromagnetic waves by the spherical particles is discussed. Nanometer-sized dielectric spheres confined in a cluster are devoted to investigate the effect of the EM radiation on them. Incident wave is considered to be in visible light spectrum which facilitates multiple scattering calculation for nanoparticles. Radiation forces are discussed in terms of scattering pressure and Lorentz force, hence Discrete Dipole Approximation (DDA) and classical Mie theory is employed in radiation force computation and electromagnetic random multiple scattering analysis. Electric momentum of dipoles is defined in the term of A-1 term method. The radiation forces on particles are accurately calculated with computer codes. Extracted results can be applied to conscious deviation of spherical nanoparticles in clean rooms or similar mediums. The effect of the incident wave parameters and the orientation of spherical profile and particles in the cluster are predicted through various simulations.
Citation
Aslan Nouri Moqadam Ali Pourziad Saeid Nikmehr , "Radiation Forces on a Cluster of Spherical Nanoparticles in Visible Light Spectrum," Progress In Electromagnetics Research C, Vol. 75, 99-109, 2017.
doi:10.2528/PIERC17031511
http://www.jpier.org/PIERC/pier.php?paper=17031511
References

1. Kimura, H., H. Okamoto, and T. Mukai, "Radiation pressure and the Poynting-Robertson effect for fluffy dust particles," Icarus, Vol. 157, 349-361, 2002.
doi:10.1006/icar.2002.6849

2. Harada, Y. and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Optics Communications, Vol. 124, 529-541, 1996.
doi:10.1016/0030-4018(95)00753-9

3. Kawata, S. and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser beam," Optics Letters, Vol. 17, 772-774, 1992.
doi:10.1364/OL.17.000772

4. Bonessi, D., K. Bonin, and T. Walker, "Optical forces on particles of arbitrary shape and size," Journal of Optics A: Pure and Applied Optics, Vol. 9, S228, 2007.
doi:10.1088/1464-4258/9/8/S16

5. Tsang, L., J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves, Theories and Applications, Vol. 27, John Wiley & Sons, 2004.

6. Draine, B. T. and J. Goodman, "Beyond Clausius-Mossotti-Wave propagation on a polarizable point lattice and the discrete dipole approximation," The Astrophysical Journal, Vol. 405, 685-697, 1993.
doi:10.1086/172396

7. Okamoto, H., "Light scattering by clusters: The al-term method," Optical Review, Vol. 2, 407-412, 1995.
doi:10.1007/s10043-995-0407-1

8. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice-Hall, 1991.

9. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," JOSA A, Vol. 11, 1491-1499, 1994.
doi:10.1364/JOSAA.11.001491

10. Novotny, L. and B. Hecht, Principles of Nano-optics, Cambridge University Press, 2012.
doi:10.1017/CBO9780511794193

11. Xu, Y.-L., "Electromagnetic scattering by an aggregate of spheres: Far field," Applied Optics, Vol. 36, 9496-9508, 1997.
doi:10.1364/AO.36.009496