1. Chen, S. and Q. Xue, "Optimized load modulation network for Doherty power amplifier performance enhancement ," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 11, 3474-3481, Nov. 2012.
doi:10.1109/TMTT.2012.2215625 Google Scholar
2. Fan, C. Z., X. W. Zhu, J. Xia, and L. Zhang, "Efficiency enhanced class-F Doherty power amplifier at 3.5 GHz for LTE-advanced application," Asia-Pacific Microwave Conference (APMC), 707-709, Seoul, 2013. Google Scholar
3. Xia, J., X. Zhu, L. Zhang, J. Zhai, and Y. Sun, "High-efficiency GaN Doherty power amplifier for 100 MHz LTE-advanced application based on modified load modulation network," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 8, 2911-2921, Aug. 2013.
doi:10.1109/TMTT.2013.2269052 Google Scholar
4. Nghiem, X. A. and R. Negra, "Design of a concurrent quad-band GaN-HEMT Doherty power amplifier for wireless applications," IEEE MTT-S International Microwave Symposium Digest, 1-4, Seattle, WA, USA, Jun. 2013. Google Scholar
5. Ozen, M. and C. Fager, "Symmetrical Doherty amplifier with high efficiency over large output power dynamic range," IEEE MTT-S International Microwave Symposium Digest, 1-3, Tampa, FL, USA, Jun. 2014. Google Scholar
6. Camarchia, V., S. Donati Guerrieri, G. Ghione, et al. "A K band GaAs MMIC Doherty power amplifier for point to point microwave backhaul applications," International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMiC’14), 1-3, Leuven, Belgium, Apr. 2014. Google Scholar
7. Xia, J. and X. Zhu, "Doherty power amplifier with enhanced in-band load modulation for 100 MHz LTE-advanced application," Microwave and Optical Technology Letters, Vol. 57, No. 2, 391-395, Feb. 2015.
doi:10.1002/mop.28854 Google Scholar
8. Park, Y., J. Lee, S. Jee, S. Kim, and B. Kim, "Optimized Doherty power amplifier with a new offset line," IEEE MTT-S International Microwave Symposium Digest, 1-4, Phoenix, AZ, USA, Jun. 2015. Google Scholar
9. Bathich, K., A. Z. Markos, and G. Boeck, "Frequency response analysis and bandwidth extension of the Doherty amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 934-944, Apr. 2011.
doi:10.1109/TMTT.2010.2098040 Google Scholar
10. Kang, D., D. Kim, Y. Cho, B. Park, J. Kim, and B. Kim, "Design of bandwidth-enhanced Doherty power amplifiers for handset applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3474-3483, Dec. 2011.
doi:10.1109/TMTT.2011.2171042 Google Scholar
11. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3-3.6 GHz wideba GaN Doherty power amplifier exploiting output compensation stages," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, Aug. 2012.
doi:10.1109/TMTT.2012.2201745 Google Scholar
12. Akbarpour, M., M. Helaoui, and F. M. Ghannouchi, "A transformerless load-modulated (TLLM) architecture for efficient wideband power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 9, 2863-2874, Sep. 2012.
doi:10.1109/TMTT.2012.2206050 Google Scholar
13. Seo, M., H. Lee, J. Gu, and Y. Yang, "Doherty power amplifier using a compact load network for bandwidth extension," Asia-Pacific Microwave Conference (APMC), 742-744, Seoul, 2013. Google Scholar
14. Piazzon, L., P. Colantonio, R. Giofre, and F. Giannini, "A wideband Doherty architecture with 36% of fractional bandwidth," IEEE Microwave Wireless Components Letters, Vol. 23, No. 11, 626-628, Nov. 2013.
doi:10.1109/LMWC.2013.2281413 Google Scholar
15. Abadi, M. N. A., H. Golestaneh, H. Sarbishaei, and S. Boumaiza, "An extended bandwidth Doherty power amplifier using a novel output combining," IEEE MTT-S International Microwave Symposium Digest, 1-3, Tampa, FL, USA, Jun. 2014. Google Scholar
16. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "An ultra-broadband GaN Doherty amplifier with 83% of fractional bandwidth," IEEE Microwave Wireless Components Letters, Vol. 24, No. 11, 775-777, Nov. 2014.
doi:10.1109/LMWC.2014.2345193 Google Scholar
17. Watanabe, S., Y. Takayama, R. Ishikawa, and K. Honjo, "A miniature broadband Doherty power amplifier with a series-connected load," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 572-579, Feb. 2015.
doi:10.1109/TMTT.2014.2377725 Google Scholar
18. Nghiem, X. A., J. Guan, and R. Negra, "Broadband sequential power amplifier with Doherty-type active load modulation," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 9, 2821-2832, Sep. 2015.
doi:10.1109/TMTT.2015.2456901 Google Scholar
19. Fang, X. H. and K. K. M. Cheng, "Improving power utilization factor of broadband Doherty amplifier by using bandpass auxiliary transformer," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 9, 2811-2820, Sep. 2015.
doi:10.1109/TMTT.2015.2447544 Google Scholar
20. Pang, J., S. He, C. Huang, Z. Dai, J. Peng, and F. You, "A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 4061-4071, Dec. 2015.
doi:10.1109/TMTT.2015.2495201 Google Scholar
21. Xia, J., M. Yang, Y. Guo, and A. Zhu, "A broadband high-efficiency Doherty power amplifier with integrated compensating reactance," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 2014-2024, Jul. 2016.
doi:10.1109/TMTT.2016.2574861 Google Scholar
22. Abadi, M. N. A., H. Golestaneh, H. Sarbishaei, and S. Boumaiza, "Doherty power amplifier with extended bandwidth and improved linearizability under carrier-aggregated signal stimuli," IEEE Microwave Wireless Components Letters, Vol. 26, No. 5, 358-360, May 2016.
doi:10.1109/LMWC.2016.2549281 Google Scholar