1. Montiel-Moreno, G., J. Zechinelli-Martini, and G. Vargas-Solar, "SLSELS: Semantic integration system for exploitation of biological resources," 2009 Mexican International Conference on Computer Science, 197-202, 2010. Google Scholar
2. Artis, F., D. Dubuc, J. Fournie, M. Poupot, and K. Grenier, "Microwave dielectric spectroscopy for biological cells suspensions analysis and proliferation evaluation," 2014 44th European Microwave Conference, 275-278, 2014.
doi:10.1109/EuMC.2014.6986423 Google Scholar
3. Daniele, M., F. Vozzi, A. Cisternino, G. Vozzi, and A. Ahluwalia, "A high-throughput bioreactor system simulating physiological environments," IEEE Transactions on Industrial Electronics, Vol. 55, No. 10, 3273-3280, 2008. Google Scholar
4. Maki, A., T. Ryynanen, J. Verho, J. Kreytzer, J. Lekkala, and P. J. Kallio, "Indirect temperature measurement and control method for cell culture devices," IEEE Transaction on Automation Science and Engineering, Vol. 1, No. 99, 1-10, 2016. Google Scholar
5. Henson, M. A., "Biochemical reactor modeling and control," IEEE Control Systems Magazine, Vol. 26, No. 4, 54-62, 2006.
doi:10.1109/MCS.2006.1657876 Google Scholar
6. Ye, S. and K. T. Chau, "Chaoization of DC motors for industrial mixing," IEEE Transactions on Industrial Electronics, Vol. 54, No. 4, 2024-2032, 2007.
doi:10.1109/TIE.2007.895150 Google Scholar
7. Bartholet, M. T., T. Nussbaumer, S. Silber, and J. W. Kolar, "Comparative evaluation of polyphase bearingless slice motors for fluid-handling applications," IEEE Transactions on Industry Applications, Vol. 45, No. 5, 1821-1830, 2009.
doi:10.1109/TIA.2009.2027366 Google Scholar
8. Park, S. and C. Lee, "Decoupled control of a disk-type rotor equipped with a three-pole hybrid magnetic bearing," IEEE/ASME Transactions on Mechatronics, Vol. 15, No. 5, 793-804, 2010.
doi:10.1109/TMECH.2009.2035113 Google Scholar
9. Ooshima, M., A. Chiba, T. Fukao, and M. A. Rahman, "Design and analysis of permanent magnet-type bearingless motors," IEEE Transactions on Industrial Electronics, Vol. 43, No. 2, 292-299, 1996.
doi:10.1109/41.491353 Google Scholar
10. Yang, S. and M. Huang, "Design and implementation of a magnetically levitated single-axis controlled blood pump," IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, 2213-2219, 2009.
doi:10.1109/TIE.2009.2017095 Google Scholar
11. Reichert, T., T. Nussbaumer, W. Gruber, and J. W. Kolar, "Bearingless Permanent-Magnet motor with 4/12 slot-pole ratio for bioreactor stirring applications," IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 3, 431-439, 2011.
doi:10.1109/TMECH.2011.2122340 Google Scholar
12. Dajaku, G., W. Xie, and D. Gerling, "Reduction of low space harmonics for the fractional slot concentrated windings using a novel stator design," IEEE Transaction on Magnetics, Vol. 50, No. 5, 1-12, 2014.
doi:10.1109/TMAG.2013.2294754 Google Scholar
13. Jian, L. and K. T. Chau, "Design and analysis of a magnetic geared electronic-continuously variable transmission system using finite element method," Progress In Electromagnetics Research, Vol. 107, 47-61, 2010.
doi:10.2528/PIER10062806 Google Scholar
14. Jian, L., G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magnetic-gear-integrated wind power generator using time-stepping finite element method," Progress In Electromagnetics Research, Vol. 113, 351-367, 2011.
doi:10.2528/PIER10121603 Google Scholar
15. Bramerdorfer, G. and D. Andessner, "Accurate and easy-to-obtain iron loss model for electric machine design," IEEE Transactions on Industrial Electronics, Vol. 64, No. 3, 2530-2537, 2017.
doi:10.1109/TIE.2016.2583402 Google Scholar
16. Bianchi, N. and E. Fornasiero, "Impact of MMF space harmonic on rotor loss in fractional-slot permanent-magnet machines," IEEE Transaction on Energy Conversion, Vol. 24, No. 2, 323-328, 2009.
doi:10.1109/TEC.2008.2006557 Google Scholar
17. Chai, F., P. Liang, Y. Pei, and S. Cheng, "Magnet shape optimization of surface-mounted permanent-magnet motors to reduce harmonic iron losses," IEEE Transaction on Magnetics, Vol. 52, No. 7, Article ID: 7300504, 2015. Google Scholar
18. Choi, G. and T. M. Jahns, "Reduction of eddy-current losses in fractional-slot concentrated-windings synchronous PM machines," IEEE Transaction on Magnetics, Vol. 52, No. 7, Article ID: 8105904, 2016. Google Scholar
19. Gonzalez, D. A. and D. M. Saban, "Study of the copper losses in a high-speed permanent-magnet machine with form-wound windings," IEEE Transactions on Industrial Electronics, Vol. 61, No. 6, 3038-3045, 2014.
doi:10.1109/TIE.2013.2262759 Google Scholar
20. Kim, Y. and K. Nam, "Copper-loss-minimizing field current control scheme for wound synchronous machines," IEEE Transactions on Power Electronics, Vol. 32, No. 2, 1335-1345, 2017.
doi:10.1109/TPEL.2016.2547953 Google Scholar