Vol. 57
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-06-12
Orthogonal Radiation Field Construction for Microwave Staring Correlated Imaging
By
Progress In Electromagnetics Research M, Vol. 57, 139-149, 2017
Abstract
Microwave staring correlated imaging (MSCI) achieves high resolution imaging results by employing the temporal-spatial independent radiation field. In MSCI, the imaging performance is determined by the independent degree of the radiation field. In this paper, a novel kind of ideal independent radiation field named the orthogonal radiation field (ORF) is constructed for MSCI. Firstly, a group of two-dimensional (2-D) orthogonal basis functions are used to construct the ideal ORF samples. Then a method is proposed to construct the ORF samples by designing the transmitting signals. The numerical simulations validate the feasibility of this method. Finally, when the ORF is applied in MSCI, the numerical simulations achieve high resolution imaging results and demonstrate good imaging performance that is robust to noise.
Citation
Bo Liu Dongjin Wang , "Orthogonal Radiation Field Construction for Microwave Staring Correlated Imaging," Progress In Electromagnetics Research M, Vol. 57, 139-149, 2017.
doi:10.2528/PIERM17042003
http://www.jpier.org/PIERM/pier.php?paper=17042003
References

1. Guo, Y., D. Wang, and X. He, "A novel super-resolution imaging method based on stochastic radiation radar array," Measurement Science and Technology, Vol. 24, No. 7, 074013, Jun. 2013.
doi:10.1088/0957-0233/24/7/074013

2. Ma, Y., X. He, and D. Wang, "Microwave staring correlated imaging and resolution analysis," Geo-Informatics in Resource Management and Sustainable Ecosystem International Symposium (GRMSE 2013), 737-747, Nov. 2013.

3. Li, D., X. Li, Y. Cheng, Y. Qin, and H. Wang, "Radar coincidence imaging: An instantaneous imaging technique with stochastic signals," IEEE Transactions on Geoscience Remote Sensing, Vol. 52, No. 4, 2261-2271, Apr. 2014.
doi:10.1109/TGRS.2013.2258929

4. Zhu, S., et al., "Radar coincidence imaging with random microwave source," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1239-1242, 2015.
doi:10.1109/LAWP.2015.2399977

5. Li, D., et al., "Three dimensional radar coincidence imaging," Progress In Electromagnetics Research M, Vol. 33, 223-238, 2013.

6. Guo, Y., D. Wang, and C. Tian, "Research on sensing matrix characteristics in microwave staring correlated imaging based on compressed sensing," 2014 IEEE International Conference on Imaging Systems and Techniques (IST), 195-200, IEEE, 2014.
doi:10.1109/IST.2014.6958472

7. Li, D., et al., "Radar coincidence imaging under grid mismatch," ISRN Signal Processing 2014, 2014.

8. Zhou, X., et al., "Radar coincidence imaging for off-grid target using frequency-hopping waveforms," International Journal of Antennas and Propagation 2016, 2016.

9. Zha, G., et al., "Effect analysis and design on array geometry for coincidence imaging radar based on effective rank theory," 2015 ISPRS International Conference on Computer Vision in Remote Sensing, International Society for Optics and Photonics, 2016.

10. Yang, H., et al., "Azimuth wavefront modulation using plasma lens array for microwave staring imaging," 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4276-4279, IEEE, 2015.
doi:10.1109/IGARSS.2015.7326771

11. Fromenteze, T., et al., "Computational imaging using a mode-mixing cavity at microwave frequencies," Applied Physics Letters, Vol. 106, No. 19, 194104, 2015.
doi:10.1063/1.4921081

12. Yurduseven, O., et al., "Printed aperiodic cavity for computational and microwave imaging," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 5, 367-369, 2016.
doi:10.1109/LMWC.2016.2548443

13. Hunt, J., et al., "Metamaterial microwave holographic imaging system," JOSA A, Vol. 31, No. 10, 2109-2119, 2014.
doi:10.1364/JOSAA.31.002109

14. Watts, C. M., et al., "Terahertz compressive imaging with metamaterial spatial light modulators," Nature Photonics, Vol. 8, No. 8, 605-609, 2014.
doi:10.1038/nphoton.2014.139