Vol. 58
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-07
MOEA/d -GO+FDTD for Optimization Design of Fragment-Type Structure
By
Progress In Electromagnetics Research M, Vol. 58, 117-124, 2017
Abstract
Fragment-type structure has been used to design antennas and microwave circuits. Special optimization technique, including optimization algorithm and EM software (electromagnetic) simulator, is necessary for the design of this kind of structure. In this paper, a novel optimization technique, MOEA/D-GO+FDTD, is proposed, where MOEA/D-GO (multiobjective evolutionary algorithm combined with enhanced genetic operators) serves as the optimization algorithm and Finite-Difference Time-Domain (FDTD) method serves as the electromagnetic simulator. As an example, a compact bandpass microstrip filter is designed by using MOEA/D-GO+FDTD. Firstly, numerical simulation of the fragment-type microstrip filter by using FDTD method is investigated. Secondly, a microstrip filter operating at 3.8GHz-6.5GHz is designed through optimizing return loss, insertion loss, and out-of-band rejection. Finally, comparison of the computational costs between different electromagnetic simulators verifies high efficiency of the proposed MOEA/D-GO+FDTD.
Citation
Da-Wei Ding, Xiao-Dong Ding, Jing Xia, and Lixia Yang, "MOEA/d -GO+FDTD for Optimization Design of Fragment-Type Structure," Progress In Electromagnetics Research M, Vol. 58, 117-124, 2017.
doi:10.2528/PIERM17042702
References

1. Ding, D. W., G. Wang, and L. Wang, "High-efficiency scheme and optimisation technique for design of fragment-type isolation structure between multiple-input and multiple-output antennas," IET Microwaves, Antennas and Propagation, Vol. 9, No. 9, 933-939, Jun. 2015.
doi:10.1049/iet-map.2014.0742

2. Choo, H. and H. Ling, "Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 150, No. 3, 137-142, Jun. 2003.

3. Alatan, L., M. I. Aksun, and K. Leblebicioglu, "Use of computationally efficient method of moments in the optimization of printed antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 4, 725-732, Apr. 1999.
doi:10.1109/8.768813

4. Soontornpipit, P., C. M. Furse, and C. C. You, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 1939-1945, Jun. 2005.
doi:10.1109/TAP.2005.848461

5. Wang, L. and G. Wang, "Design of high-directivity wideband microstrip directional coupler with fragment-type structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 3962-3970, Oct. 2016.
doi:10.1109/TMTT.2015.2490671

6. Zhao, Q., G. Wang, and D. W. Ding, "Compact microstrip bandpass filter with fragment-loaded resonators," Microwave and Optical Technoly Letters, Vol. 56, No. 12, 2896-2899, Sep. 2014.
doi:10.1002/mop.28726

7. Sigmund, O. and K. Maute, "Topology optimization approaches: A comparative review," Structural and Multidisciplinary Optimization, Vol. 48, No. 6, 1031-1055, 2013.
doi:10.1007/s00158-013-0978-6

8. Ding, D. W. and G. Wang, "MOEA/D-GO for fragmented antenna design," Progress In Electromagnetics Research M, Vol. 33, 1-5, 2013.
doi:10.2528/PIERM13071610

9. Zhang, Q. and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Transactions on Evolutionary Computation, Vol. 11, No. 6, 712-731, Nov. 2007.
doi:10.1109/TEVC.2007.892759

10. John, M. and M. J. Ammann, "Design of a wide-band printed antenna using a genetic algorithm on an array of overlapping sub-patches," IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, 92-95, 2006.
doi:10.1109/IWAT.2006.1608983

11. Goojo, K. and Y. C. Chung, "Optimization of UHF RFID tag antennas using a genetic algorithm," IEEE Antennas and Propagation Society International Symposium, 2087-2090, Oct. 9-14, 2006.

12. Jin, Z., H. Yang, and X. Tang, "Parameters and schemes selection in the optimization of the Computational Science and Optimization,", Vol. 2, 259-262, May 2010.

13. Yang, L. X., X. D. Ding, and D. W. Ding, "Numerical simulation of fragment-type antenna by using finite difference time domain (FDTD)," Progress In Electromagnetics Research M, Vol. 55, 133-142, 2017.
doi:10.2528/PIERM16111103

14. Sheen, D. M., S. M. Ali, and M. D. Abouzahra, "Application of the three-dimensional Finite-Difference Time-Domain method to the analysis of planar microstrip circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 8, No. 7, 849-857, Jun. 1990.
doi:10.1109/22.55775