1. Gibson, P. J., "The Vivaldi aerial," Proc. IEEE 9th Eur. Microw. Conf., 101-105, 1979. Google Scholar
2. Moosazadeh, M., S. Kharkovsky, J. T. Case, and B. Samali, "Miniaturized UWB antipodal Vivaldi antenna and its application for detection of void inside concrete specimens," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1317-1320, 2017.
doi:10.1109/LAWP.2016.2633536 Google Scholar
3. Yang, Z., J. J. Huang, W. W. Wu, and N. C. Yuan, "An antipodal Vivaldi antenna with bandnotched characteristics for ultra-wideband applications," AEU — Int. J. Electron. Communs., Vol. 76, 152-157, 2017.
doi:10.1016/j.aeue.2017.03.026 Google Scholar
4. Mark, R., W. van Cappellen, E. van der Wal, M. Arts, R. van der Brink, and V. Klaas, "Development of a Vivaldi tile for the SKA mid frequency aperture array," 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016. Google Scholar
5. Kota, K. and L. Shafai, "Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna," Electron. Lett., Vol. 47, No. 5, 303-304, 2011.
doi:10.1049/el.2010.7579 Google Scholar
6. Teni, G., N. Zhang, J. Qiu, and P. Zhang, "Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation," IEEE Antennas Wireless Propag. Lett., Vol. 12, 417-420, 2013.
doi:10.1109/LAWP.2013.2253592 Google Scholar
7. Molaei, A., M. Kaboli, S. A. Mirtaheri, and M. S. Abrishamian, "Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications," IET Microw., Antennas Propag., Vol. 8, No. 14, 1137-1142, 2014.
doi:10.1049/iet-map.2014.0207 Google Scholar
8. Juan, L., F. Guang, Y. Lin, and F. Demin, "A modified balanced antipodal Vivaldi antenna with improved radiation characteristics," Microw. Opt. Technol. Lett., Vol. 55, No. 6, 1321-1325, 2013.
doi:10.1002/mop.27558 Google Scholar
9. Akhter, Z., B. N. Abhijith, and M. J. Akhtar, "Hemisphere lens-loaded Vivaldi antenna for time domain microwave imaging of concealed objects," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 9, 1183-1197, 2016.
doi:10.1080/09205071.2016.1186574 Google Scholar
10. He, S. H., W. Shan, C. Fan, Z. C. Mo, F. H. Yang, and J. H. Chen, "An improved Vivaldi antenna for vehicular wireless communication systems," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1505-1508, 2014. Google Scholar
11. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3321-3324, 2015.
doi:10.1109/TAP.2015.2429749 Google Scholar
12. Fei, P., Y. C. Jiao, W. Hu, and F. S. Zhang, "A miniaturized antipodal Vivaldi antenna with improved radiation characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 10, 127-130, 2011. Google Scholar
13. In, D.-M., M.-J. Lee, D. Kim, C.-Y. Oh, and Y.-S. Kim, "Antipodal linearly tapered slot antenna using unequal half-circular defected sides for gain improvements," Microw. Opt. Technol. Lett., Vol. 54, No. 8, 1963-1965, 2012.
doi:10.1002/mop.26942 Google Scholar
14. De Oliveira, A. M., M. B. Perotoni, S. T. Kofuji, and J. F. Justo, "A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1334-1337, 2015.
doi:10.1109/LAWP.2015.2404875 Google Scholar
15. Wang, Y. W., G. M. Wang, and B. F. Zong, "Directivity improvement of Vivaldi antenna using double-slot structure," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1380-1383, 2013.
doi:10.1109/LAWP.2013.2285182 Google Scholar
16. Alhawari, A. R. H., A. Ismail, M. A. Mahdi, and R. S. A. Raja Abdullah, "Antipodal Vivaldi antenna performance booster exploiting snug-in negative index metamaterial," Progress In Electromagnetics Research C, Vol. 27, 265-279, 2012.
doi:10.2528/PIERC12012906 Google Scholar
17. Zhou, B., H. Li, X. Y. Zou, and T. J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anistropic zero-index metamaterial," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.
doi:10.2528/PIER11072710 Google Scholar
18. Sun, M., Z. N. Chen, and X. M. Qing, "Gain enhancement of 60GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Trans. Antenna Propag., Vol. 61, 1741-1746, 2013.
doi:10.1109/TAP.2012.2237154 Google Scholar
19. Chen, L., Z. Y. Lei, R. Yang, J. Fan, and X. W. Shi, "A broadband artificial material for gain enhancement of antipodal tapered slot antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 395-400, 2015.
doi:10.1109/TAP.2014.2365044 Google Scholar
20. Gaurav, K. P and K. M. Manoj, "Anisotropic artificial material with ENZ and high refractive index property for high gain Vivaldi antenna design," 15th Mediterranean Microwave Symposium (MMS), 1-4, 2015. Google Scholar
21. Kumar, P., Z. Akhter, A. Kr. Jha, and M. Jaleel Akhtar, "Directivity enhancement of double slot Vivaldi antenna using anisotropic zero-index metamaterials," International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2333-2334, 2015. Google Scholar
22. Li, X. X., L. Sang, Y. Shi, G. Q. Lv, and R. Cao, "Gain improvement of planar printed broadband end-fire antenna," Int. J. Electro., Vol. 104, No. 11, 1906-1919, 2017.
doi:10.1080/00207217.2017.1329949 Google Scholar
23. Yngvesson, K. S., T. L. Korzeniowski, Y. S. Kim, E. L. Kollberg, and J. F. Johansson, "The tapered slot antenna – A new integrated element for millimeter-wave applications," IEEE Trans. Microw. Theory Technol., Vol. 37, No. 2, 365-374, 1989.
doi:10.1109/22.20062 Google Scholar
24. Saee Arezoomand, A., R. A. Sadeghzadeh, and M. Naser-Moghadasi, "Investigation and improvement of the phase-center characteristics of Vivaldi’s antenna for UWB applications," Microw. Opt. Technol. Lett., Vol. 58, No. 6, 1275-1281, 2016.
doi:10.1002/mop.29795 Google Scholar