Vol. 79
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-10-31
Gaussian Beam Electromagnetic Scattering from PEC Polygonal Cross-Section Cylinders
By
Progress In Electromagnetics Research C, Vol. 79, 101-113, 2017
Abstract
In scattering experiments, incident fields are usually produced by aperture antennas or lasers. Nevertheless, incident plane waves are usually preferred to simplify theoretical analysis. The aim of this paper is the analysis of the electromagnetic scattering from a perfectly electrically conducting polygonal cross-section cylinder when a Gaussian beam impinges upon it. Assuming TM/TE incidence with respect to the cylinder axis, the problem is formulated as electric/magnetic field integral equation in the spectral domain, respectively. The Method of analytical preconditioning is applied in order to guarantee the convergence of the discretization scheme. Moreover, fast convergence is achieved in terms of both computation time and storage requirements by choosing expansion functions reconstructing the behaviour of the fields on the wedges with a closed-form spectral domain counterpart and by means of an analytical asymptotic acceleration technique.
Citation
Mario Lucido, Fulvio Schettino, Marco Donald Migliore, Daniele Pinchera, and Gaetano Panariello, "Gaussian Beam Electromagnetic Scattering from PEC Polygonal Cross-Section Cylinders," Progress In Electromagnetics Research C, Vol. 79, 101-113, 2017.
doi:10.2528/PIERC17070707
References

1. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

2. Roy, T., T. K. Sarkar, A. R. Djordjevic, and M. Salazar-Palma, "A hybrid method solution of scattering by conducting cylinders (TM case)," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 12, 2145-2151, Dec. 1996.
doi:10.1109/22.556441        Google Scholar

3. Yashiro, K. and S. Ohkawa, "Boundary element method for electromagnetic scattering from cylinders," IEEE Trans. Antennas Propag., Vol. 33, No. 4, 383-389, Apr. 1985.
doi:10.1109/TAP.1985.1143587        Google Scholar

4. Michaeli, A., "A uniform GTD solution for the far-field scattering by polygonal cylinders and strips," IEEE Trans. Antennas Propag., Vol. 35, No. 8, 983-986, Aug. 1987.
doi:10.1109/TAP.1987.1144211        Google Scholar

5. Tiberio, R., G. Manara, G. Pelosi, and R. G. Kouyoumijian, "High frequency electromagnetic scattering of plane waves from double wedges," IEEE Trans. Antennas Propag., Vol. 37, No. 9, 1172-1180, Sep. 1989.
doi:10.1109/8.35798        Google Scholar

6. Nosich, A. I., "Method of analytical regularization in computational photonics," Radio Science, Vol. 51, No. 8, 1421-1430, Aug. 2016.
doi:10.1002/2016RS006044        Google Scholar

7. Li, Q. and R. J. Vernon, "Theoretical and experimental investigation of Gaussian beam transmission and reflection by a dielectric slab at 110 GHz," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3449-3457, Nov. 2006.        Google Scholar

8. Collin, R. E., "Scattering of an incident gaussian beam by a perfectly conducting rough surface," IEEE Trans. Antennas Propag., Vol. 42, No. 1, 70-74, Jan. 1994.
doi:10.1109/8.272303        Google Scholar

9. Shavit, R., T. Wells, and A. Cohen, "Scattering analysis of arbitrarily shaped cylinders in a focused beam system," IEE Proc. — Microw. Antennas Propag., Vol. 145, No. 4, 289-294, Aug. 1998.
doi:10.1049/ip-map:19982042        Google Scholar

10. Pelosi, G. and S. Selleri, "A numerical approach for the diffraction of a Gaussian beam from a perfectly conducting wedge," IEEE Trans. Antennas Propag., Vol. 47, No. 10, 1555-1559, Oct. 1999.
doi:10.1109/8.805898        Google Scholar

11. Petersson, L. E. R. and G. S. Smith, "Three-dimensional electromagnetic diffraction of a Gaussian beam by a perfectly conducting half-plane," J. Opt. Soc. Am. A, Vol. 19, No. 11, 2265-2280, Nov. 2002.
doi:10.1364/JOSAA.19.002265        Google Scholar

12. Wang, G. X., Y.-B. Gan, and L.-W. Li, "Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM case," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 319-322, 2003.
doi:10.1109/LAWP.2003.822200        Google Scholar

13. Yang, J., L.-W. Li, K. Yasumoto, and C.-H. Liang, "Two-dimensional scattering of a Gaussian beam by a periodic array of circular cylinders," IEEE Trans. on Geoscience and Remote Sensing, Vol. 43, No. 2, 280-285, Feb. 2005.
doi:10.1109/TGRS.2004.841416        Google Scholar

14. Hillairet, J., J. Sokoloff, and S. Bolioli, "Uniform analytic scattered fields of a PEC plate illuminated by a vector paraxial gaussian beam," Progress In Electromagnetic Research B, Vol. 14, 203-217, 2009.
doi:10.2528/PIERB09012701        Google Scholar

15. Zhang, H., Y. Sun, and Z. Huang, "Scattering by a multilayered infinite cylinder arbitrarily illuminated with a shaped beam," IEEE Trans. Antennas Propag., Vol. 59, No. 11, 4369-4371, Nov. 2011.
doi:10.1109/TAP.2011.2164227        Google Scholar

16. Han, Y., Z. Cui, and W. Zhao, "Scattering of Gaussian beam by arbitrarily shaped particles with multiple internal inclusions," Opt. Express, Vol. 20, 718-731, 2012.
doi:10.1364/OE.20.000718        Google Scholar

17. Whitman, G. M., Q. Wang, P. Spector, and F. K. Schwering, "Gaussian beam scattering from a deterministic rough metal surface," IEEE Trans. Antennas Propag., Vol. 64, No. 5, 1868-1876, May 2016.
doi:10.1109/TAP.2016.2537383        Google Scholar

18. Kolmogorov, A. N. and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover, New York, 1999.

19. Meixner, J., "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propag., Vol. 20, 442-446, 1972.
doi:10.1109/TAP.1972.1140243        Google Scholar

20. Eswaran, K., "On the solutions of a class of dual integral equations occurring in diffraction problems," Proc. Roy. Soc. London, Ser. A, Vol. 429, 399–427, 1990.        Google Scholar

21. Veliev, E. I. and V. V. Veremey, "Numerical-analytical approach for the solution to the wave scattering by polygonal cylinders and flat strip structures," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Science House, Tokyo, 1993.        Google Scholar

22. Davis, M. J. and R. W. Scharstein, "Electromagnetic plane wave excitation of an open-ended finitelength conducting cylinder," Journal of Electromagnetic Waves and Applications, Vol. 7, 301-319, 1993.
doi:10.1163/156939393X00354        Google Scholar

23. Hongo, K. and H. Serizawa, "Diffraction of electromagnetic plane wave by rectangular plate and rectangular hole in the conducting plate," IEEE Trans. Antennas Propag., Vol. 47, No. 6, 1029-1041, Jun. 1999.
doi:10.1109/8.777128        Google Scholar

24. Bliznyuk, N. Y., A. I. Nosich, and A. N. Khizhnyak, "Accurate computation of a circular-disk printed antenna axisymmetrically excited by an electric dipole," Microwave and Optical Technology Letters, Vol. 25, No. 3, 211-216, 2000.
doi:10.1002/(SICI)1098-2760(20000505)25:3<211::AID-MOP15>3.0.CO;2-D        Google Scholar

25. Tsalamengas, J. L., "Rapidly converging direct singular integral-equation techniques in the analysis of open microstrip lines on layered substrates," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 3, 555-559, Mar. 2001.
doi:10.1109/22.910563        Google Scholar

26. Losada, V., R. R. Boix, and F. Medina, "Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive halfspace," IEEE Trans. Geosci. Remote Sensing, Vol. 41, 988-997, May 2003.
doi:10.1109/TGRS.2003.810678        Google Scholar

27. Lucido, M., G. Panariello, and F. Schettino, "Accurate and efficient analysis of stripline structures," Microwave and Optical Technology Letters, Vol. 43, No. 1, 14-21, Oct. 2004.
doi:10.1002/mop.20361        Google Scholar

28. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102        Google Scholar

29. Coluccini, G., M. Lucido, and G. Panariello, "TM scattering by perfectly conducting polygonal cross-section cylinders: A new surface current density expansion retaining up to the second-order edge behavior," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 407-412, Jan. 2012.
doi:10.1109/TAP.2011.2167924        Google Scholar

30. Lucido, M., "An analytical technique to fast evaluate mutual coupling integrals in spectral domain analysis of multilayered coplanar coupled striplines," Microwave and Optical Technology Letters, Vol. 54, No. 4, 1035-1039, Apr. 2012.
doi:10.1002/mop.26674        Google Scholar

31. Coluccini, G., M. Lucido, and G. Panariello, "Spectral domain analysis of open single and coupled microstrip lines with polygonal cross-section in bound and leaky regimes," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 2, 736-745, Feb. 2013.
doi:10.1109/TMTT.2012.2231424        Google Scholar

32. Lucido, M., "An efficient evaluation of the self-contribution integrals in the spectral-domain analysis of multilayered striplines," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 360-363, 2013.
doi:10.1109/LAWP.2013.2252139        Google Scholar

33. Coluccini, G. and M. Lucido, "A new high efficient analysis of the scattering by a perfectly conducting rectangular plate," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2615-2622, May 2013.
doi:10.1109/TAP.2012.2237533        Google Scholar

34. Lucido, M., "Electromagnetic scattering by a perfectly conducting rectangular plate buried in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 10, 6368-6378, Oct. 2014.
doi:10.1109/TGRS.2013.2296353        Google Scholar

35. Corsetti, F., M. Lucido, and G. Panariello, "Effective analysis of the propagation in coupled rectangular-core waveguides," IEEE Photonics Technology Letters, Vol. 26, No. 18, 1855-1858, Sep. 2014.
doi:10.1109/LPT.2014.2338074        Google Scholar

36. Di Murro, F., M. Lucido, G. Panariello, and F. Schettino, "Guaranteed-convergence method of analysis of the scattering by an arbitrarily oriented zero-thickness PEC disk buried in a lossy half-space," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3610-3620, Aug. 2015.
doi:10.1109/TAP.2015.2438336        Google Scholar

37. Lucido, M., M. D. Migliore, and D. Pinchera, "A new analytically regularizing method for the analysis of the scattering by a hollow finite-length PEC circular cylinder," Progress In Electromagnetics Research B, Vol. 70, 55-71, 2016.
doi:10.2528/PIERB16081404        Google Scholar

38. Lucido, M., G. Panariello, and F. Schettino, "Scattering by a zero-thickness PEC disk: A new analytically regularizing procedure based on Helmholtz decomposition and galerkin method," Radio Science, Vol. 52, No. 1, 2-14, Jan. 2017.
doi:10.1002/2016RS006140        Google Scholar

39. Jones, D. S., The Theory of Electromagnetism, Pergamon Press, 1964.

40. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic, London, U.K., 1994.

41. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Verlag Harri Deutsch, The Netherlands, 1984.