Vol. 61
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-28
Object Segmentation for Linearly Polarimetric Passive Millimeter Wave Images Based on Principle Component Analysis
By
Progress In Electromagnetics Research M, Vol. 61, 169-176, 2017
Abstract
Traditional passive millimeter wave imaging (PMMW) mechanism measures intensity-only radiometric energy of the scene, and the limited information restricts the subsequent process of target detection and recognition. Polarimetric phenomena provide an extra dimension of information and are utilized to improve the PMMW imaging performance. Based on linear polarization characteristics for terrain identification in our previous work, the horizontal, vertical and 45 degree linearly polarimetric images are obtained by manually changing the polarization orientation of the radiometer with a selfdesigned rotating installation. Then the related Stokes parameters and the linearly polarized angle are calculated for principal component analysis (PCA). Pixels with similar polarimetric characteristic are clustered in the score-plot feature space. Then the clusters are extracted to realize object segmentation of the raw image. Three types of objects including metallic stuff, lawn and concrete park are finally segmented, demonstrating that the proposed segmentation is feasible and effective.
Citation
Xuan Lu Furong Peng Guanghui Li Zelong Xiao Taiyang Hu , "Object Segmentation for Linearly Polarimetric Passive Millimeter Wave Images Based on Principle Component Analysis," Progress In Electromagnetics Research M, Vol. 61, 169-176, 2017.
doi:10.2528/PIERM17080804
http://www.jpier.org/PIERM/pier.php?paper=17080804
References

1. Isiker, H., C. Ozdemir, and I. Unal, "Millimeter-wave band radiometric imaging experiments for the detection of concealed objects," 2015 IEEE Radar Conference, 23-26, Johannesbur, 2015.

2. Chen, H.-M., S. Lee, R. M. Rao, M. A. Slamani, and P. K. Varshney, "Imaging for concealed weapon detection: A tutorial overview of development in imaging sensors and processing," IEEE Signal Processing Magazine, Vol. 22, No. 2, 52-61, 2005.
doi:10.1109/MSP.2005.1406480

3. Yujiri, L., "Passive millimeter wave imaging," 2006 IEEE MTT-S International Microwave Symposium Digest, 98-101, 2006.
doi:10.1109/MWSYM.2006.249938

4. Manabu, I., N. Shunichi, and N. Tatsuo, "Near-field thermal imaging by passive millimeter-wave microscopy," 2014 Asia-Pacific Microwave Conference, APMC, 1034-1036, 2014.

5. Zrazhevskij, A. Y., V. A. Golunov, D. M. Ermakov, M. T. Smirnov, E. P. Novichikhin, S. P. Golovachev, and E. V. Konkov, "The development of radiophysical methods for the polarization, including stereo) images acquisition in millimeter range related to problems of objects recognition, navigation, emergency management, security control and antiterroristic activity," Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2258-2261, 2005.

6. Nghiem, S. V., M. E. Veysoglu, J. A. Kong, and R. T. Shin, "Polarimetric passive remote sensing of a periodic soil surface: Microwave measurements and analysis," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 9, 997-1005, 1991.
doi:10.1163/156939391X01021

7. Bernacki, B. E., J. F. Kelly, D. M Sheen, D. L. McMakin, J. R. Tedeschi, T. E. Hall, B. K. Hatchell, and P. L. J. Valdez, "Phenomenology studies using a scanning fully polarimetric passive W-band millimeter wave imager," SPIE Proceedings: Passive and Active Millimeter-Wave Imaging XIV, 80220C1-80220C10, 2011.

8. Wikner, D. A. and G. Samples, "Polarimetric passive millimeter-wave sensing," SPIE Proceedings: Passive Millimeter-Wave Imaging Technology V, 86-93, 2011.

9. Bernacki, B. E., J. F. Kelly, D. M. Sheen, D. L. McMakin, J. R. Tedeschi, R. V. Harris, A. Mendoza, T. E. Hall, B. K. Hatchell, and P. L. J. Valdez, "Passive fully polarimetric W-band millimeter-wave imaging (Invited Paper)," SPIE Proceedings: RF and Millimeter-Wave Photonics II, 82590F1-82590F11, 2012.

10. Liao, S., N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, E. Dieckman, and A. C. Raptis, "Passive millimeter-wave dual-polarization imagers," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 7, 2042-2050, 2012.
doi:10.1109/TIM.2012.2183032

11. Wilson, J. P., C. A. Schuetz, E. L. Stein, Jr., J. P. Samluk, D. G. Mackrides, and D. W. Prather, "Polarization difference imaging for millimeter-wave in a desert environment," SPIE Proceedings: Millimeter-Wave and Terahertz Sensors and Technology III, 78370E1-78370E6, 2012.

12. Gopalsami, N., S. Liao, T. Elmer, E. R. Koehl, and A. C. Raptis, "Evaluation of passive millimeter wave system performance in adverse weather conditions," SPIE Proceedings: Passive and Active Millimeter-Wave Imaging XV, 83620I1-83620I6, 2012.

13. Yeom, S., D.-S. Lee, H. Lee, J.-Y. Son, and V. P. Guschin, "Vector clustering of passive millimeter wave images with linear polarization for concealed object detection," Progress In Electromagnetics Research Letters, Vol. 39, 169-180, 2013.
doi:10.2528/PIERL13021907

14. Wilson, J. P., C. A. Schuetz, C. E. Harrity, S. Kozacik, D. L. K. Eng, and D. W. Prather, "Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery," Optics Express, Vol. 21, No. 10, 12899-12906, 2013.
doi:10.1364/OE.21.012899

15. Kim, W.-G., N.-W. Moon, H.-K. Kim, and Y.-H. Kim, "Linear polarization sum imaging in passive millimeter-wave imaging system for target recognition," Progress in Electromagnetics Research, Vol. 136, 175-193, 2013.
doi:10.2528/PIER12110709

16. Lu, X., Z. Xiao, J. Xu, and H. Huo, "3D millimeter wave image by combined active and passive system," Progress In Electromagnetics Research Letters, Vol. 50, 7-12, 2014.
doi:10.2528/PIERL14090402

17. Lu, X., L. Wu, Z. Xiao, and J. Xu, "Ranging technique based on conically scanned single pixel millimeter wave radiometer," International Journal of Engineering Research in Africa, Vol. 12, 43-52, 2014.
doi:10.4028/www.scientific.net/JERA.12.43

18. Lu, X., Z. Xiao, and J. Xu, "Linear polarization characteristics for terrain identification at millimeter wave band," Chinese Optics Letters, Vol. 12, No. 10, 1012011-1012015, 2014.

19. Prats-Montalbana, J. M., A. de Juanb, and A. Ferrera, "Multivariate image analysis: A review with applications," Chemometrics and Intelligent Laboratory Systems, Vol. 107, No. 1, 1-23, 2011.
doi:10.1016/j.chemolab.2011.03.002