Vol. 63
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-12-03
High Resolution Wideband Imaging of Fast Rotating Targets Based on Random PRI Radar
By
Progress In Electromagnetics Research M, Vol. 63, 59-70, 2018
Abstract
By exploiting the micro-motion features of fast rotating targets, wideband radar has been successfully applied to high resolution imaging. However, due to the traditional fixed pulse repetition interval (PRI), the target image may suffer from aliasing in some practical situations. In this paper, under the compressed sensing (CS) radar framework, an efficient wideband imaging scheme with random PRI signal is introduced for aliasing reduction. Considering that direct application of the CS theory will result in large-scale dictionaries and high computational complexity, we firstly generate a low resolution image by applying modified generalized Radon transform on range-slow time domain and then scale down the dictionary column by reserving the atoms corresponding to those strong scattering areas. Simulation results show that this scheme can achieve aliasing-free images with acceptable computational cost.
Citation
Zhen Liu Xin Chen Jinping Sui , "High Resolution Wideband Imaging of Fast Rotating Targets Based on Random PRI Radar," Progress In Electromagnetics Research M, Vol. 63, 59-70, 2018.
doi:10.2528/PIERM17081005
http://www.jpier.org/PIERM/pier.php?paper=17081005
References

1. Wang, Q., M. D. Xing, G. Lu, and Z. Bao, "High-resolution three-dimensional radar imaging for rapidly spinning targets," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 1, 22-30, Jan. 2008.
doi:10.1109/TGRS.2007.909086

2. Zhang, Q., T. S. Yeo, H. S. Tan, and Y. Luo, "Imaging of a moving target with rotating parts based on the Hough transform," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 1, 291-299, Jan. 2008.
doi:10.1109/TGRS.2007.907105

3. Bai, X., F. Zhou, M. Xing, and Z. Bao, "High resolution ISAR imaging of targets with rotating parts," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 4, 2534-2543, Oct. 2011.

4. Bai, X., M. Xing, F. Zhou, and Z. Bao, "High-resolution three-dimensional imaging of spinning space debris," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 7, 2352-2362, Jul. 2009.

5. Huo, K., Y. Liu, J. Hu, W. Jiang, and X. Li, "A novel imaging method for fast rotating targets based on the segmental pseudo Keystone transform," IEEE Transaction on Geoscience and Remote Sensing, Vol. 39, No. 4, 1464-1472, Apr. 2011.
doi:10.1109/TGRS.2010.2077301

6. Luo, Y., Q. Zhang, C. Qiu, X. Liang, and K. Li, "Micro-Doppler effect analysis and feature extraction in ISAR imaging with stepped-frequency chirp signals," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 4, 2087-2098, Apr. 2010.
doi:10.1109/TGRS.2009.2034367

7. Cook, C. E. and M. Bernfeld, Radar Signals: An Introduction to Theory and Application, Academic Press, New York, 1967.

8. Kaveh, M. and G. R. Cooper, "Average ambiguity function for a randomly staggered pulse sequence," IEEE Transactions on Aerospace and Electronic Systems, Vol. 12, No. 3, 410-413, May 1976.
doi:10.1109/TAES.1976.308245

9. Vergara-Dominguez, L., "Analysis of the digital MTI filter with random PRI," IEE Proceedings --- F, Vol. 140, No. 2, 129-137, Apr. 1993.

10. Benjamin, R., "Form of Doppler processing for radars of random p.r.i. and r.f.," Electronics Letters, Vol. 15, No. 24, 782, Nov. 1979.
doi:10.1049/el:19790556

11. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, Feb. 2006.
doi:10.1109/TIT.2005.862083

12. Candes, E. and T. Tao, "Near optimal signal recovery from random projections: Universal encoding strategies?," IEEE Transactions on Information Theory, Vol. 52, No. 12, 5406-5425, Dec. 2006.
doi:10.1109/TIT.2006.885507

13. Donoho, D., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582

14. Bourguignon, S., H. Carfantan, and J. Idier, "A sparsity-based method for the estimation of spectral lines from irregularly sampled data," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 4, 575-585, Dec. 2007.
doi:10.1109/JSTSP.2007.910275

15. Stoica, P., P. Babu, and J. Li, "New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data," IEEE Transactions on Signal Processing, Vol. 59, No. 1, 35-47, Jan. 2011.
doi:10.1109/TSP.2010.2086452

16. Patel, V. M., G. R. Easley, D. M. Healy, Jr., and R. Chellappa, "Compressed synthetic aperture radar," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 244-254, Apr. 2010.
doi:10.1109/JSTSP.2009.2039181

17. Liu, Z., X. Z. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012.
doi:10.2528/PIER12022001

18. Liu, Z., X. Z. Wei, and X. Li, "Aliasing-free moving target detection in random pulse repetition interval radar based on compressed sensing," IEEE Sensors Journal, Vol. 13, No. 7, 2523-2534, Jul. 2013.
doi:10.1109/JSEN.2013.2249762

19. Alonso, M. T., P. Lopez-Dekker, and J. J. Mallorqui, "A novel strategy for radar imaging based on compressive sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4285-4295, Dec. 2010.
doi:10.1109/TGRS.2010.2051231

20. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

21. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, Jun. 2011.
doi:10.2528/PIER11033105

22. Zhang, L., et al., "Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3824-3838, Oct. 2010.
doi:10.1109/TGRS.2010.2048575

23. You, P., Z. Liu, X. Wei, H. Wang, and X. Li, "Aliasing-free high resolution imaging of fast rotating targets with narrowband radar," Journal of Central South University, Vol. 21, 1842-1851, 2014.
doi:10.1007/s11771-014-2130-1

24. Liu, Z., X. Wei, and X. Li, "Aliasing-free micro-Doppler analysis based on short-time compressed sensing," IET Signal Processing, Vol. 8, No. 2, 176-187, 2014.
doi:10.1049/iet-spr.2012.0403

25. Xing, M. D., R. B. Wu, J. Q. Lan, and Z. Bao, "Migration through resolution cell compensation in ISAR imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 1, No. 2, 141-144, Apr. 2004.
doi:10.1109/LGRS.2004.824766

26. Bai, X. R., G. C. Sun, Q. S. Wu, M. D. Xing, and Z. Bao, "Narrow-band radar imaging of spinning targets," Sci. China Inf. Sci., Vol. 54, No. 4, 873-883, Apr. 2011.
doi:10.1007/s11432-011-4182-2

27. Hansen, K. V. and P. A. Toft, "Fast curve estimation using preconditioned generalized Radon transform," IEEE Transactions on Image Processing, Vol. 5, No. 12, 1651-1661, Dec. 1996.
doi:10.1109/83.544572

28. Rohling, H., "Radar CFAR thresholding in clutter and multiple target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 19, No. 4, 608-621, Jul. 1983.
doi:10.1109/TAES.1983.309350

29. Martorella, M., N. Acito, and F. Berizzi, "Statistical CLEAN technique for ISAR imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 11, 3552-3560, Nov. 2007.
doi:10.1109/TGRS.2007.897440

30. Li, G., H. Zhang, and X. Wang, "ISAR 2-D imaging of uniformly rotating targets via matching pursuit," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 2, 1838-1846, Apr. 2012.
doi:10.1109/TAES.2012.6178106

31. Zhang, L., M. Xing, C. Qiu, J. Li, and Z. Bao, "Achieving higher resolution ISAR imaging with limited pulses via compressed sampling," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 3, 567-571, Jul. 2009.
doi:10.1109/LGRS.2009.2021584

32. Candes, E., J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Communications on Pure and Applied Mathematics, Vol. 59, No. 8, 1207-1223, Aug. 2006.
doi:10.1002/cpa.20124

33. Donoho, D. L., M. Elad, and V. N. Temlyakov, "Stable recovery of sparse overcomplete representations in the presence of noise," IEEE Transactions on Information Theory, Vol. 52, No. 1, 6-18, Jan. 2006.
doi:10.1109/TIT.2005.860430

34. Babaie-Zadeh, M. and C. Jutten, "On the stable recovery of the sparsest overcomplete representations in presence of noise," IEEE Transactions on Signal Processing, Vol. 58, No. 10, 5396-5400, Oct. 2010.
doi:10.1109/TSP.2010.2052357

35. Grant, M. and S. Boyd, "CVX: Matlab software for disciplined convex programming," http://stanford.edu/˜boyd/cvxCVX, 2008.