1. Carpes, W. P., Jr., et al. "TLM and FEM methods applied in the analysis of electromagnetic coupling," IEEE Transactions on Magnetics, Vol. 36, No. 4, 982-985, 2000.
doi:10.1109/20.877606 Google Scholar
2. Dehkhoda, P., A. Tavakoli, and M. Azadifar, "Shielding effectiveness of an enclosure with finite wall thickness and perforated opposing walls at oblique incidence and arbitrary polarization by GMMoM," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 4, 792-805, 2012.
doi:10.1109/TEMC.2012.2188855 Google Scholar
3. Jiao, C., et al. "Subcell FDTD analysis of shielding effectiveness of a thin-walled enclosure with an aperture," IEEE Transactions on Magnetics, Vol. 42, No. 4, 1075-1078, 2006.
doi:10.1109/TMAG.2006.871638 Google Scholar
4. Robinson, M. P., et al. "Shielding effectiveness of a rectangular enclosure with a rectangular aperture," Electronics Letters, Vol. 32, No. 17, 1559-1560, 1996.
doi:10.1049/el:19961030 Google Scholar
5. Po'Ad, F. A., et al. "Analytical and experimental study of the shielding effectiveness of a metallic enclosure with off-centered apertures," International Zurich Symposium on Electromagnetic Compatibility, 2006, Emc-Zurich, 618-621, IEEE Xplore, 2006. Google Scholar
6. Dan, S., Y. Shen, and Y. Gao, "3 high-order mode transmission line model of enclosure with off-center aperture," International Symposium on Electromagnetic Compatibility, 361-364, IEEE, 2007. Google Scholar
7. Nie, B. L. and P. A. Du, "An efficient and reliable circuit model for the shielding effectiveness prediction of an enclosure with an aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 3, 357-364, 2015.
doi:10.1109/TEMC.2014.2383438 Google Scholar
8. Liu, E., P. A. Du, and B. Nie, "An extended analytical formulation for fast prediction of shielding effectiveness of an enclosure at different observation points with an off-axis aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 589-598, 2014.
doi:10.1109/TEMC.2013.2289742 Google Scholar
9. Azaro, R., et al. "A circuital approach to evaluating the electromagnetic field on rectangular apertures backed by rectangular cavities," IEEE Transactions on Microwave Theory & Techniques, Vol. 50, No. 10, 2259-2266, 2002.
doi:10.1109/TMTT.2002.803434 Google Scholar
10. Konefal, T., et al. "A fast multiple mode intermediate level circuit model for the prediction of shielding effectiveness of a rectangular box containing a rectangular aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 678-691, 2006.
doi:10.1109/TEMC.2005.853715 Google Scholar
11. Yin, M. C. and P. A. Du, "An improved circuit model for the prediction of the shielding effectiveness and resonances of an enclosure with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 448-456, 2016.
doi:10.1109/TEMC.2016.2517163 Google Scholar
12. Shim, J., et al. "Circuital modeling and measurement of shielding effectiveness against oblique incident plane wave on apertures in multiple sides of rectangular enclosure," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 3, 566-577, 2010.
doi:10.1109/TEMC.2009.2039483 Google Scholar
13. Hao, J.-H., P.-H. Qi, J.-Q. Fan, and Y.-Q. Guo, "Analysis of shielding effectiveness of enclosures with apertures and inner windows with TLM," Progress In Electromagnetic Research M, Vol. 32, 73-82, 2013.
doi:10.2528/PIERM13060312 Google Scholar
14. Solin, J. R., "Formula for the field excited in a rectangular cavity with a small aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 1, 82-90, 2011.
doi:10.1109/TEMC.2010.2053711 Google Scholar
15. Solin, J. R., "Formula for the field excited in a rectangular cavity with an electrically large aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 1, 188-192, 2012.
doi:10.1109/TEMC.2011.2179941 Google Scholar
16. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, Wiley, 1997.
17. Cohn, S. B., "Microwave coupling by large apertures," Proceedings of the IRE, Vol. 40, No. 6, 696-699, 1952.
doi:10.1109/JRPROC.1952.274063 Google Scholar
18. Pozar, D. M., Microwave Engineering, Academic, 2006.
19. Mcdonald, N. A., "Polynomial approximations for the electric polarizabilities of some small apertures," IEEE Xplore, Vol. 33, No. 11, 1146-1149, 1985. Google Scholar
20. Mcdonald, N. A., "Polynomial approximations for the transverse magnetic polarizabilities of some small apertures," IEEE Transactions on Microwave Theory & Techniques, Vol. 35, No. 1, 20-23, 2003.
doi:10.1109/TMTT.1987.1133589 Google Scholar
21. Mcdonald, N. A., "Simple approximations for the longitudinal magnetic polarizabilities of some small apertures," IEEE Transactions on Microwave Theory & Techniques, Vol. 36, No. 7, 1141-1144, 2002.
doi:10.1109/22.3648 Google Scholar
22. Nitsch, J. B., S. V. Tkachenko, and S. Potthast, "Transient excitation of rectangular resonators through electrically small circular holes," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 6, 1252-1259, 2012.
doi:10.1109/TEMC.2012.2201724 Google Scholar
23. Li, L. W., et al. "On the eigenfunction expansion of electromagnetic dyadic Green's functions in rectangular cavities and waveguides," IEEE Transactions on Microwave Theory & Techniques, Vol. 43, No. 3, 700-702, 1995.
doi:10.1109/22.372122 Google Scholar
24. Crawhall, R. J. H., EMI Potential of Multiple Sources within a Shielded Enclosure, 1993.
25. Goudos, S. K., E. E. Vafiadis, and J. N. Sahalos, "Monte Carlo simulation for the prediction of the emission level from multiple sources inside shielded enclosures," IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 2, 291-308, 2002.
doi:10.1109/TEMC.2002.1003394 Google Scholar